cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 42 results. Next

A325274 Sum of the omega-sequence of n!.

Original entry on oeis.org

0, 0, 1, 5, 9, 13, 14, 20, 23, 25, 24, 30, 33, 35, 35, 40, 44, 46, 49, 51, 54, 56, 59, 61, 65, 67, 72, 75, 78, 80, 83, 85, 90, 90, 95, 97, 101, 103, 105, 106, 110, 112, 115, 117, 122, 125, 127, 129, 134, 136, 139, 140, 143, 145, 149, 153, 157, 159, 160, 162
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1), with sum 13.

Crossrefs

a(n) = A056239(A325275(n)).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[Total[omseq[n!]],{n,0,100}]

A325275 Heinz number of the omega-sequence of n!.

Original entry on oeis.org

1, 1, 2, 18, 126, 990, 850, 11970, 19530, 25830, 4606, 73458, 92862, 116298, 43134, 229086, 275418, 366894, 440946, 515394, 568062, 613206, 769158, 963378, 1060254, 1135602, 6108570, 6431490, 6915870, 8923590, 9398610, 10191870, 11352510, 3139866, 16458210
Offset: 0

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Crossrefs

A001222(a(n)) = A325272.
A055396(a(n)/2) = A325273.
A056239(a(n)) = A325274.
Row n of A325276 is row a(n) of A112798.
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Table[Times@@Prime/@omseq[n!],{n,30}]

A325247 Numbers whose omega-sequence is strict (no repeated parts).

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 36, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 100, 101, 103, 107, 109, 113, 121, 125, 127, 128, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193
Offset: 1

Views

Author

Gus Wiseman, Apr 16 2019

Keywords

Comments

First differs from A323306 in having 216.
We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).
Also Heinz numbers of integer partitions of whose omega-sequence is strict (counted by A325250). The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     3: {2}
     4: {1,1}
     5: {3}
     7: {4}
     8: {1,1,1}
     9: {2,2}
    11: {5}
    13: {6}
    16: {1,1,1,1}
    17: {7}
    19: {8}
    23: {9}
    25: {3,3}
    27: {2,2,2}
    29: {10}
    31: {11}
    32: {1,1,1,1,1}
    36: {1,1,2,2}
		

Crossrefs

Positions of squarefree numbers in A325248.
Omega-sequence statistics: A001221 (second omega), A001222 (first omega), A071625 (third omega), A304465 (second-to-last omega), A182850 or A323014 (depth), A323022 (fourth omega), A325248 (Heinz number).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#1]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],UnsameQ@@omseq[#]&]

A367859 Multiset multiplicity cokernel (MMC) of n. Product of (greatest prime factor with exponent k)^(number of prime factors with exponent k) over all distinct exponents k appearing in the prime factorization of n.

Original entry on oeis.org

1, 2, 3, 2, 5, 9, 7, 2, 3, 25, 11, 6, 13, 49, 25, 2, 17, 6, 19, 10, 49, 121, 23, 6, 5, 169, 3, 14, 29, 125, 31, 2, 121, 289, 49, 9, 37, 361, 169, 10, 41, 343, 43, 22, 15, 529, 47, 6, 7, 10, 289, 26, 53, 6, 121, 14, 361, 841, 59, 50, 61, 961, 21, 2, 169, 1331
Offset: 1

Views

Author

Gus Wiseman, Dec 03 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the multiset multiplicity cokernel MMC(m) of a multiset m by the following property, holding for all distinct multiplicities k >= 1. If S is the set of elements of multiplicity k in m, then max(S) has multiplicity |S| in MMC(m). For example, MMC({1,1,2,2,3,4,5}) = {2,2,5,5,5}, and MMC({1,2,3,4,5,5,5,5}) = {4,4,4,4,5}. As an operation on multisets MMC is represented by A367858, and as an operation on their ranks it is represented by A367859.

Examples

			90 has prime factorization 2^1*3^2*5^1, so for k = 1 we have 5^2, and for k = 2 we have 3^1, so a(90) = 75.
		

Crossrefs

Positions of 2's are A000079 without 1.
Positions of 3's are A000244 without 1.
Positions of primes (including 1) are A000961.
Depends only on rootless base A052410, see A007916.
Positions of prime powers are A072774.
Positions of squarefree numbers are A130091.
For kernel instead of cokernel we have A367580, ranks of A367579.
Rows of A367858 have this rank, sum A367860, max A061395, min A367587.
A007947 gives squarefree kernel.
A027746 lists prime factors, length A001222, indices A112798.
A027748 lists distinct prime factors, length A001221, indices A304038.
A071625 counts distinct prime exponents.
A124010 gives multiset of multiplicities (prime signature), sorted A118914.

Programs

  • Mathematica
    mmc[q_]:=With[{mts=Length/@Split[q]}, Sort[Table[Max@@Select[q,Count[q,#]==i&], {i,mts}]]];
    Table[Times@@mmc[Join@@ConstantArray@@@FactorInteger[n]], {n,30}]

Formula

a(n^k) = a(n) for all positive integers n and k.
If n is squarefree, a(n) = A006530(n)^A001222(n).
A055396(a(n)) = A367587(n).
A056239(a(n)) = A367860(n).
A061395(a(n)) = A061395(n).
A001222(a(n)) = A001221(n).
A001221(a(n)) = A071625(n).
A071625(a(n)) = A323022(n).

A323056 Numbers with exactly five distinct exponents in their prime factorization, or five distinct parts in their prime signature.

Original entry on oeis.org

174636000, 206388000, 244490400, 261954000, 269892000, 274428000, 288943200, 291060000, 301644000, 309582000, 343980000, 349272000, 365148000, 366735600, 377848800, 383292000, 404838000, 411642000, 412776000, 422301600, 433414800, 449820000, 452466000, 457380000
Offset: 1

Views

Author

Gus Wiseman, Jan 03 2019

Keywords

Comments

The first term is A006939(5) = 174636000.
Positions of 5's in A071625.
Numbers k such that A001221(A181819(k)) = 5.

Examples

			174636000 = 2^5 * 3^4 * 5^3 * 7^2 * 11^1 has five distinct exponents so belongs to the sequence.
		

Crossrefs

One distinct exponent: A062770 or A072774.
Two distinct exponents: A323055.
Three distinct exponents: A323024.
Four distinct exponents: A323025.
Five distinct exponents: A323056.

Programs

  • Mathematica
    Select[Range[300000000],Length[Union[Last/@FactorInteger[#]]]==5&]
  • PARI
    is(n) = #Set(factor(n)[, 2]) == 5 \\ David A. Corneth, Jan 12 2019

Extensions

a(13)-a(24) from Daniel Suteu, Jan 12 2019

A325264 Numbers whose omega-sequence sums to 7.

Original entry on oeis.org

30, 36, 42, 64, 66, 70, 78, 100, 102, 105, 110, 114, 130, 138, 154, 165, 170, 174, 182, 186, 190, 195, 196, 222, 225, 230, 231, 238, 246, 255, 258, 266, 273, 282, 285, 286, 290, 310, 318, 322, 345, 354, 357, 366, 370, 374, 385, 399, 402, 406, 410, 418, 426
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1).

Examples

			The sequence of terms together with their prime indices and omega-sequences begins:
   30: {1,2,3} (3,3,1)
   36: {1,1,2,2} (4,2,1)
   42: {1,2,4} (3,3,1)
   64: {1,1,1,1,1,1} (6,1)
   66: {1,2,5} (3,3,1)
   70: {1,3,4} (3,3,1)
   78: {1,2,6} (3,3,1)
  100: {1,1,3,3} (4,2,1)
  102: {1,2,7} (3,3,1)
  105: {2,3,4} (3,3,1)
  110: {1,3,5} (3,3,1)
  114: {1,2,8} (3,3,1)
  130: {1,3,6} (3,3,1)
  138: {1,2,9} (3,3,1)
  154: {1,4,5} (3,3,1)
  165: {2,3,5} (3,3,1)
  170: {1,3,7} (3,3,1)
  174: {1,2,10} (3,3,1)
  182: {1,4,6} (3,3,1)
  186: {1,2,11} (3,3,1)
  190: {1,3,8} (3,3,1)
  195: {2,3,6} (3,3,1)
  196: {1,1,4,4} (4,2,1)
		

Crossrefs

Positions of 7's in A325249.
Numbers with omega-sequence summing to m: A000040 (m = 1), A001248 (m = 3), A030078 (m = 4), A068993 (m = 5), A050997 (m = 6), A325264 (m = 7).
Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    Select[Range[100],Total[omseq[#]]==7&]

A325281 Numbers of the form a*b, a*a*b, or a*a*b*c where a, b, and c are distinct primes. Numbers with sorted prime signature (1,1), (1,2), or (1,1,2).

Original entry on oeis.org

6, 10, 12, 14, 15, 18, 20, 21, 22, 26, 28, 33, 34, 35, 38, 39, 44, 45, 46, 50, 51, 52, 55, 57, 58, 60, 62, 63, 65, 68, 69, 74, 75, 76, 77, 82, 84, 85, 86, 87, 90, 91, 92, 93, 94, 95, 98, 99, 106, 111, 115, 116, 117, 118, 119, 122, 123, 124, 126, 129, 132
Offset: 1

Views

Author

Gus Wiseman, Apr 18 2019

Keywords

Comments

Also numbers whose adjusted frequency depth is one plus their number of prime factors counted with multiplicity. The adjusted frequency depth of a positive integer n is 0 if n = 1, and otherwise it is one plus the number of times one must apply A181819 to reach a prime number, where A181819(k = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of k. For example, 180 has adjusted frequency depth 5 because we have: 180 -> 18 -> 6 -> 4 -> 3.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose adjusted frequency depth is equal to their length plus 1. The enumeration of these partitions by sum is given by A127002.

Examples

			The sequence of terms together with their prime indices and their omega-sequences (see A323023) begins:
   6:     {1,2} (2,2,1)
  10:     {1,3} (2,2,1)
  12:   {1,1,2} (3,2,2,1)
  14:     {1,4} (2,2,1)
  15:     {2,3} (2,2,1)
  18:   {1,2,2} (3,2,2,1)
  20:   {1,1,3} (3,2,2,1)
  21:     {2,4} (2,2,1)
  22:     {1,5} (2,2,1)
  26:     {1,6} (2,2,1)
  28:   {1,1,4} (3,2,2,1)
  33:     {2,5} (2,2,1)
  34:     {1,7} (2,2,1)
  35:     {3,4} (2,2,1)
  38:     {1,8} (2,2,1)
  39:     {2,6} (2,2,1)
  44:   {1,1,5} (3,2,2,1)
  45:   {2,2,3} (3,2,2,1)
  46:     {1,9} (2,2,1)
  50:   {1,3,3} (3,2,2,1)
  51:     {2,7} (2,2,1)
  52:   {1,1,6} (3,2,2,1)
  55:     {3,5} (2,2,1)
  57:     {2,8} (2,2,1)
  58:    {1,10} (2,2,1)
  60: {1,1,2,3} (4,3,2,2,1)
		

Crossrefs

Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (length/frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    fdadj[n_Integer]:=If[n==1,0,Length[NestWhileList[Times@@Prime/@Last/@FactorInteger[#]&,n,!PrimeQ[#]&]]];
    Select[Range[100],fdadj[#]==PrimeOmega[#]+1&]

A355382 Number of divisors d of n such that bigomega(d) = omega(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jul 02 2022

Keywords

Comments

The statistic omega = A001221 counts distinct prime factors (without multiplicity).
The statistic bigomega = A001222 counts prime factors with multiplicity.
If positive integers are regarded as arrows from the number of prime factors to the number of distinct prime factors, this sequence counts divisible composable pairs. Is there a nice choice of a composition operation making this into an associative category?

Examples

			The set of divisors of 180 satisfying the condition is {12, 18, 20, 30, 45}, so a(180) = 5.
		

Crossrefs

The version with multiplicity is A181591.
For partitions we have A355383, with multiplicity A339006.
The version for compositions is A355384.
Positions of first appearances are A355386.
A000005 counts divisors.
A001221 counts prime indices without multiplicity.
A001222 count prime indices with multiplicity.
A070175 gives representatives for bigomega and omega, triangle A303555.

Programs

  • Mathematica
    Table[Length[Select[Divisors[n],PrimeOmega[#]==PrimeNu[n]&]],{n,100}]

A325416 Least k such that the omega-sequence of k sums to n, and 0 if none exists.

Original entry on oeis.org

1, 2, 0, 4, 8, 6, 32, 30, 12, 24, 48, 96, 60, 120, 240, 480, 960, 1920, 3840, 2520, 5040, 10080, 20160, 40320, 80640
Offset: 0

Views

Author

Gus Wiseman, Apr 25 2019

Keywords

Comments

We define the omega-sequence of n (row n of A323023) to have length A323014(n) = adjusted frequency depth of n, and the k-th term is Omega(red^{k-1}(n)), where Omega = A001222 and red^{k} is the k-th functional iteration of red = A181819, defined by red(n = p^i*...*q^j) = prime(i)*...*prime(j) = product of primes indexed by the prime exponents of n. For example, we have 180 -> 18 -> 6 -> 4 -> 3, so the omega-sequence of 180 is (5,3,2,2,1) with sum 13.

Examples

			The sequence of terms together with their omega-sequences (n = 2 term not shown) begins:
     1:
     2:  1
     4:  2 1
     8:  3 1
     6:  2 2 1
    32:  5 1
    30:  3 3 1
    12:  3 2 2 1
    24:  4 2 2 1
    48:  5 2 2 1
    96:  6 2 2 1
    60:  4 3 2 2 1
   120:  5 3 2 2 1
   240:  6 3 2 2 1
   480:  7 3 2 2 1
   960:  8 3 2 2 1
  1920:  9 3 2 2 1
  3840: 10 3 2 2 1
  2520:  7 4 3 2 2 1
  5040:  8 4 3 2 2 1
		

Crossrefs

Omega-sequence statistics: A001222 (first omega), A001221 (second omega), A071625 (third omega), A323022 (fourth omega), A304465 (second-to-last omega), A182850 or A323014 (frequency depth), A325248 (Heinz number), A325249 (sum).

Programs

  • Mathematica
    omseq[n_Integer]:=If[n<=1,{},Total/@NestWhileList[Sort[Length/@Split[#]]&,Sort[Last/@FactorInteger[n]],Total[#]>1&]];
    da=Table[Total[omseq[n]],{n,10000}];
    Table[If[!MemberQ[da,k],0,Position[da,k][[1,1]]],{k,0,Max@@da}]

A328830 The second prime shadow of n: a(1) = 1; for n > 1, a(n) = a(A003557(n)) * prime(A056169(n)) when A056169(n) > 0, otherwise a(n) = a(A003557(n)).

Original entry on oeis.org

1, 2, 2, 2, 2, 3, 2, 2, 2, 3, 2, 4, 2, 3, 3, 2, 2, 4, 2, 4, 3, 3, 2, 4, 2, 3, 2, 4, 2, 5, 2, 2, 3, 3, 3, 3, 2, 3, 3, 4, 2, 5, 2, 4, 4, 3, 2, 4, 2, 4, 3, 4, 2, 4, 3, 4, 3, 3, 2, 6, 2, 3, 4, 2, 3, 5, 2, 4, 3, 5, 2, 4, 2, 3, 4, 4, 3, 5, 2, 4, 2, 3, 2, 6, 3, 3, 3, 4, 2, 6, 3, 4, 3, 3, 3, 4, 2, 4, 4, 3, 2, 5, 2, 4, 5
Offset: 1

Views

Author

Antti Karttunen, Oct 29 2019

Keywords

Comments

a(n) depends only on prime signature of n (cf. A025487).

Examples

			For n = 30 = 2 * 3 * 5, there are three unitary prime factors, while A003557(30) = 1, which terminates the recursion, thus a(30) = prime(3) = 5.
For n = 60060 = 2^2 * 3 * 5 * 7 * 11 * 13, there are 5 unitary prime factors, while in A003557(60060) = 2 there is only one, thus a(60060) = prime(5) * prime(1) = 11 * 2 = 22.
The number 1260 = 2^2*3^2*5*7 has prime exponents (2,2,1,1) so its prime shadow is prime(2)*prime(2)*prime(1)*prime(1) = 36.  Next, 36 = 2^2*3^2 has prime exponents (2,2) so its prime shadow is prime(2)*prime(2) = 9. In fact, the term a(1260) = 9 is the first appearance of 9 in the sequence. - _Gus Wiseman_, Apr 28 2022
		

Crossrefs

Column 2 of A353510.
Differs from A182860 for the first time at a(30) = 5, while A182860(30) = 4.
Cf. A182863 for the first appearances.
A005361 gives product of prime exponents.
A112798 gives prime indices, sum A056239.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A325131 lists numbers relatively prime to their prime shadow.
A325755 lists numbers divisible by their prime shadow.

Programs

Formula

a(1) = 1; for n > 1, a(n) = A008578(1+A056169(n)) * a(A003557(n)).
A001221(a(n)) = A323022(n).
A001222(a(n)) = A071625(n).
a(n) = A181819(A181819(n)). - Gus Wiseman, Apr 27 2022

Extensions

Added Gus Wiseman's new name to the front of the definition. - Antti Karttunen, Apr 27 2022
Previous Showing 21-30 of 42 results. Next