cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 111 results. Next

A367901 Number of sets of subsets of {1..n} contradicting a strict version of the axiom of choice.

Original entry on oeis.org

1, 2, 9, 195, 63765, 4294780073, 18446744073639513336, 340282366920938463463374607341656713953, 115792089237316195423570985008687907853269984665640564039457583610129753447747
Offset: 0

Views

Author

Gus Wiseman, Dec 05 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The a(2) = 9 sets of sets:
  {{}}
  {{},{1}}
  {{},{2}}
  {{},{1,2}}
  {{},{1},{2}}
  {{},{1},{1,2}}
  {{},{2},{1,2}}
  {{1},{2},{1,2}}
  {{},{1},{2},{1,2}}
		

Crossrefs

The version for simple graphs is A367867, covering A367868.
The complement is counted by A367902, no singletons A367770, ranks A367906.
The version without empty edges is A367903, ranks A367907.
For a unique choice (instead of none) we have A367904, ranks A367908.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]], Select[Tuples[#],UnsameQ@@#&]=={}&]],{n,0,3}]

Formula

a(n) = 2^2^n - A367902(n). - Christian Sievers, Aug 01 2024

Extensions

a(5)-a(8) from Christian Sievers, Aug 01 2024

A367862 Number of n-vertex labeled simple graphs with the same number of edges as covered vertices.

Original entry on oeis.org

1, 1, 1, 2, 20, 308, 5338, 105298, 2366704, 60065072, 1702900574, 53400243419, 1836274300504, 68730359299960, 2782263907231153, 121137565273808792, 5645321914669112342, 280401845830658755142, 14788386825536445299398, 825378055206721558026931, 48604149005046792753887416
Offset: 0

Views

Author

Gus Wiseman, Dec 07 2023

Keywords

Comments

Unlike the connected case (A057500), these graphs may have more than one cycle; for example, the graph {{1,2},{1,3},{1,4},{2,3},{2,4},{5,6}} has multiple cycles.

Examples

			Non-isomorphic representatives of the a(4) = 20 graphs:
  {}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,4},{2,3}}
  {{1,2},{1,3},{2,4},{3,4}}
		

Crossrefs

The connected case is A057500, unlabeled A001429.
Counting all vertices (not just covered) gives A116508.
The covering case is A367863, unlabeled A006649.
For set-systems we have A367916, ranks A367917.
A001187 counts connected graphs, A001349 unlabeled.
A003465 counts covering set-systems, unlabeled A055621, ranks A326754.
A006125 counts graphs, A000088 unlabeled.
A006129 counts covering graphs, A002494 unlabeled.
A058891 counts set-systems, unlabeled A000612, without singletons A016031.
A059201 counts covering T_0 set-systems, unlabeled A319637, ranks A326947.
A133686 = graphs satisfy strict AoC, connected A129271, covering A367869.
A143543 counts simple labeled graphs by number of connected components.
A323818 counts connected set-systems, unlabeled A323819, ranks A326749.
A367867 = graphs contradict strict AoC, connected A140638, covering A367868.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{2}]], Length[#]==Length[Union@@#]&]],{n,0,5}]
  • PARI
    \\ Here b(n) is A367863(n)
    b(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(binomial(k,2), n))
    a(n) = sum(k=0, n, binomial(n,k) * b(k)) \\ Andrew Howroyd, Dec 29 2023

Formula

Binomial transform of A367863.

Extensions

Terms a(8) and beyond from Andrew Howroyd, Dec 29 2023

A367904 Number of sets of nonempty subsets of {1..n} with only one possible way to choose a sequence of different vertices of each edge.

Original entry on oeis.org

1, 2, 6, 38, 666, 32282, 3965886, 1165884638, 792920124786, 1220537093266802, 4187268805038970806, 31649452354183112810198, 522319168680465054600480906, 18683388426164284818805590810122, 1439689660962836496648920949576152046, 237746858936806624825195458794266076911118
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2023

Keywords

Examples

			The set-system Y = {{1},{1,2},{2,3}} has choices (1,1,2), (1,1,3), (1,2,2), (1,2,3), of which only (1,2,3) has all different elements, so Y is counted under a(3).
The a(0) = 1 through a(2) = 6 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1},{2}}
             {{1},{1,2}}
             {{2},{1,2}}
		

Crossrefs

The maximal case (n subsets) is A003024.
The version for at least one choice is A367902.
The version for no choices is A367903, no singletons A367769, ranks A367907.
These set-systems have ranks A367908, nonzero A367906.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A323818 counts covering connected set-systems, unlabeled A323819.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#],UnsameQ@@#&]]==1&]],{n,0,3}]

Formula

a(n) = A367902(n) - A367772(n). - Christian Sievers, Jul 26 2024
Binomial transform of A003024. - Christian Sievers, Aug 12 2024

Extensions

a(5)-a(8) from Christian Sievers, Jul 26 2024
More terms from Christian Sievers, Aug 12 2024

A368095 Number of non-isomorphic set-systems of weight n satisfying a strict version of the axiom of choice.

Original entry on oeis.org

1, 1, 2, 4, 8, 17, 39, 86, 208, 508, 1304
Offset: 0

Views

Author

Gus Wiseman, Dec 24 2023

Keywords

Comments

A set-system is a finite set of finite nonempty sets. The weight of a set-system is the sum of cardinalities of its elements.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(5) = 17 set-systems:
  {1}  {12}    {123}      {1234}        {12345}
       {1}{2}  {1}{23}    {1}{234}      {1}{2345}
               {2}{12}    {12}{34}      {12}{345}
               {1}{2}{3}  {13}{23}      {14}{234}
                          {3}{123}      {23}{123}
                          {1}{2}{34}    {4}{1234}
                          {1}{3}{23}    {1}{2}{345}
                          {1}{2}{3}{4}  {1}{23}{45}
                                        {1}{24}{34}
                                        {1}{4}{234}
                                        {2}{13}{23}
                                        {2}{3}{123}
                                        {3}{13}{23}
                                        {4}{12}{34}
                                        {1}{2}{3}{45}
                                        {1}{2}{4}{34}
                                        {1}{2}{3}{4}{5}
		

Crossrefs

For labeled graphs we have A133686, complement A367867.
For unlabeled graphs we have A134964, complement A140637.
For set-systems we have A367902, complement A367903.
These set-systems have BII-numbers A367906, complement A367907.
The complement is A368094, connected A368409.
Repeats allowed: A368098, ranks A368100, complement A368097, ranks A355529.
Minimal multiset partitions not of this type are counted by A368187.
The connected case is A368410.
Factorizations of this type are counted by A368414, complement A368413.
Allowing repeated edges gives A368422, complement A368421.
A000110 counts set-partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    Table[Length[Select[bmp[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Select[Tuples[#], UnsameQ@@#&]!={}&]], {n,0,10}]

A368098 Number of non-isomorphic multiset partitions of weight n satisfying a strict version of the axiom of choice.

Original entry on oeis.org

1, 1, 3, 7, 21, 54, 165, 477, 1501, 4736, 15652
Offset: 0

Views

Author

Gus Wiseman, Dec 25 2023

Keywords

Comments

A multiset partition is a finite multiset of finite nonempty multisets. The weight of a multiset partition is the sum of cardinalities of its elements. Weight is generally not the same as number of vertices.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(1) = 1 through a(4) = 21 multiset partitions:
  {{1}}  {{1,1}}    {{1,1,1}}      {{1,1,1,1}}
         {{1,2}}    {{1,2,2}}      {{1,1,2,2}}
         {{1},{2}}  {{1,2,3}}      {{1,2,2,2}}
                    {{1},{2,2}}    {{1,2,3,3}}
                    {{1},{2,3}}    {{1,2,3,4}}
                    {{2},{1,2}}    {{1},{1,2,2}}
                    {{1},{2},{3}}  {{1,1},{2,2}}
                                   {{1,2},{1,2}}
                                   {{1},{2,2,2}}
                                   {{1,2},{2,2}}
                                   {{1},{2,3,3}}
                                   {{1,2},{3,3}}
                                   {{1},{2,3,4}}
                                   {{1,2},{3,4}}
                                   {{1,3},{2,3}}
                                   {{2},{1,2,2}}
                                   {{3},{1,2,3}}
                                   {{1},{2},{3,3}}
                                   {{1},{2},{3,4}}
                                   {{1},{3},{2,3}}
                                   {{1},{2},{3},{4}}
		

Crossrefs

The case of labeled graphs is A133686, complement A367867.
The case of unlabeled graphs is A134964, complement A140637 (apparently).
Set-systems of this type are A367902, ranks A367906, connected A368410.
The complimentary set-systems are A367903, ranks A367907, connected A368409.
For set-systems we have A368095, complement A368094.
The complement is A368097, ranks A355529.
These multiset partitions have ranks A368100.
The connected case is A368412, complement A368411.
Factorizations of this type are counted by A368414, complement A368413.
For set multipartitions we have A368422, complement A368421.
A000110 counts set partitions, non-isomorphic A000041.
A003465 counts covering set-systems, unlabeled A055621.
A007716 counts non-isomorphic multiset partitions, connected A007718.
A058891 counts set-systems, unlabeled A000612, connected A323818.
A283877 counts non-isomorphic set-systems, connected A300913.

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]] /@ Cases[Subsets[set],{i,_}];
    mpm[n_]:=Join@@Table[Union[Sort[Sort/@(#/.x_Integer:>s[[x]])]& /@ sps[Range[n]]], {s,Flatten[MapIndexed[Table[#2,{#1}]&,#]]& /@ IntegerPartitions[n]}];
    brute[m_]:=First[Sort[Table[Sort[Sort /@ (m/.Rule@@@Table[{i,p[[i]]},{i,Length[p]}])], {p,Permutations[Union@@m]}]]];
    Table[Length[Union[brute/@Select[mpm[n], Select[Tuples[#],UnsameQ@@#&]!={}&]]], {n,0,6}]

A367908 Numbers n such that there is only one way to choose a different binary index of each binary index of n.

Original entry on oeis.org

1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 17, 19, 21, 22, 24, 26, 28, 34, 35, 37, 38, 40, 41, 44, 49, 50, 56, 67, 69, 70, 73, 74, 81, 88, 98, 104, 128, 129, 130, 131, 133, 134, 136, 137, 138, 139, 141, 142, 145, 147, 149, 150, 152, 154, 156, 162, 163, 165, 166, 168
Offset: 1

Views

Author

Gus Wiseman, Dec 11 2023

Keywords

Comments

Also BII-numbers of set-systems (sets of nonempty sets) satisfying a strict version of the axiom of choice in exactly one way.
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The set-system {{1},{1,2},{1,3}} with BII-number 21 satisfies the axiom in exactly one way, namely (1,2,3), so 21 is in the sequence.
The terms together with the corresponding set-systems begin:
   1: {{1}}
   2: {{2}}
   3: {{1},{2}}
   5: {{1},{1,2}}
   6: {{2},{1,2}}
   8: {{3}}
   9: {{1},{3}}
  10: {{2},{3}}
  11: {{1},{2},{3}}
  13: {{1},{1,2},{3}}
  14: {{2},{1,2},{3}}
  17: {{1},{1,3}}
  19: {{1},{2},{1,3}}
  21: {{1},{1,2},{1,3}}
  22: {{2},{1,2},{1,3}}
		

Crossrefs

These set-systems are counted by A367904.
Positions of 1's in A367905, firsts A367910, sorted firsts A367911.
If there is at least one choice we get A367906, counted by A367902.
If there are no choices we get A367907, counted by A367903.
If there are multiple choices we get A367909, counted by A367772.
The version for MM-numbers of multiset partitions is A368101.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A059201 counts covering T_0 set-systems.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A368098 counts unlabeled multiset partitions for axiom, complement A368097.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100], Length[Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]]==1&]
  • Python
    from itertools import count, islice, product
    def bin_i(n): #binary indices
        return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
    def a_gen(): #generator of terms
        for n in count(1):
            p = list(product(*[bin_i(k) for k in bin_i(n)]))
            x,c = len(p),0
            for j in range(x):
                if len(set(p[j])) == len(p[j]): c += 1
                if j+1 == x and c == 1: yield(n)
    A367908_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Feb 10 2024

Formula

A136556 a(n) = binomial(2^n - 1, n).

Original entry on oeis.org

1, 1, 3, 35, 1365, 169911, 67945521, 89356415775, 396861704798625, 6098989894499557055, 331001552386330913728641, 64483955378425999076128999167, 45677647585984911164223317311276545, 118839819203635450208125966070067352769535, 1144686912178270649701033287538093722740144666625
Offset: 0

Views

Author

Paul D. Hanna, Jan 07 2008; Paul Hanna and Vladeta Jovovic, Jan 15 2008

Keywords

Comments

Number of n x n binary matrices without zero rows and with distinct rows up to permutation of rows, cf. A014070.
Row 0 of square array A136555.
From Gus Wiseman, Dec 19 2023: (Start)
Also the number of n-element sets of nonempty subsets of {1..n}, or set-systems with n vertices and n edges (not necessarily covering). The covering case is A054780. For example, the a(3) = 35 set-systems are:
{1}{2}{3} {1}{2}{12} {1}{2}{123} {1}{12}{123} {12}{13}{123}
{1}{2}{13} {1}{3}{123} {1}{13}{123} {12}{23}{123}
{1}{2}{23} {1}{12}{13} {1}{23}{123} {13}{23}{123}
{1}{3}{12} {1}{12}{23} {2}{12}{123}
{1}{3}{13} {1}{13}{23} {2}{13}{123}
{1}{3}{23} {2}{3}{123} {2}{23}{123}
{2}{3}{12} {2}{12}{13} {3}{12}{123}
{2}{3}{13} {2}{12}{23} {3}{13}{123}
{2}{3}{23} {2}{13}{23} {3}{23}{123}
{3}{12}{13} {12}{13}{23}
{3}{12}{23}
{3}{13}{23}
Of these, only {{1},{2},{1,2}}, {{1},{3},{1,3}}, and {{2},{3},{2,3}} do not cover the vertex set.
(End)

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 35*x^3 + 1365*x^4 + 169911*x^5 +...
A(x) = 1/(1+x) + log(1+2*x)/(1+2*x) + log(1+4*x)^2/(2!*(1+4*x)) + log(1+8*x)^3/(3!*(1+8*x)) + log(1+16*x)^4/(4!*(1+16*x)) + log(1+32*x)^5/(5!*(1+32*x)) +...
		

Crossrefs

Sequences of the form binomial(2^n +p*n +q, n): this sequence (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), A060690 (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1).
The covering case A054780 has binomial transform A367916, ranks A367917.
Connected graphs of this type are A057500, unlabeled A001429.
Graphs of this type are A116508, covering A367863, unlabeled A006649.
A003465 counts set-systems covering {1..n}, unlabeled A055621.
A058891 counts set-systems, connected A323818, without singletons A016031.

Programs

  • Magma
    [Binomial(2^n -1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021
    
  • Maple
    A136556:= n-> binomial(2^n-1,n); seq(A136556(n), n=0..20); # G. C. Greubel, Mar 14 2021
  • Mathematica
    f[n_] := Binomial[2^n - 1, n]; Array[f, 12] (* Robert G. Wilson v *)
    Table[Length[Subsets[Rest[Subsets[Range[n]]],{n}]],{n,0,4}] (* Gus Wiseman, Dec 19 2023 *)
  • PARI
    {a(n) = binomial(2^n-1,n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    /* As coefficient of x^n in the g.f.: */
    {a(n) = polcoeff( sum(i=0,n, 1/(1 + 2^i*x +x*O(x^n)) * log(1 + 2^i*x +x*O(x^n))^i/i!), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • Python
    from math import comb
    def A136556(n): return comb((1<Chai Wah Wu, Jan 02 2024
  • Sage
    [binomial(2^n -1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021
    

Formula

a(n) = Sum_{k=0..n} (-1)^(n-k) * binomial(2^n,k).
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n,k) * (2^n-1)^k.
G.f.: Sum_{n>=0} log(1 + 2^n*x)^n / (n! * (1 + 2^n*x)).
a(n) ~ 2^(n^2)/n!. - Vaclav Kotesovec, Jul 02 2016

Extensions

Edited by N. J. A. Sloane, Jan 26 2008

A370636 Number of subsets of {1..n} such that it is possible to choose a different binary index of each element.

Original entry on oeis.org

1, 2, 4, 7, 14, 24, 39, 61, 122, 203, 315, 469, 676, 952, 1307, 1771, 3542, 5708, 8432, 11877, 16123, 21415, 27835, 35757, 45343, 57010, 70778, 87384, 106479, 129304, 155802, 187223, 374446, 588130, 835800, 1124981, 1456282, 1841361, 2281772, 2791896, 3367162
Offset: 0

Views

Author

Gus Wiseman, Mar 08 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The a(0) = 1 through a(4) = 14 subsets:
  {}  {}   {}     {}     {}
      {1}  {1}    {1}    {1}
           {2}    {2}    {2}
           {1,2}  {3}    {3}
                  {1,2}  {4}
                  {1,3}  {1,2}
                  {2,3}  {1,3}
                         {1,4}
                         {2,3}
                         {2,4}
                         {3,4}
                         {1,2,4}
                         {1,3,4}
                         {2,3,4}
		

Crossrefs

Simple graphs of this type are counted by A133686, covering A367869.
Unlabeled graphs of this type are counted by A134964, complement A140637.
Simple graphs not of this type are counted by A367867, covering A367868.
Set systems of this type are counted by A367902, ranks A367906.
Set systems not of this type are counted by A367903, ranks A367907.
Set systems uniquely of this type are counted by A367904, ranks A367908.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
Factorizations are counted by A368414/A370814, complement A368413/A370813.
For prime indices we have A370582, differences A370586.
The complement for prime indices is A370583, differences A370587.
The complement is A370637, differences A370589, without ones A370643.
The case of a unique choice is A370638, maxima A370640, differences A370641.
First differences are A370639.
The minimal case of the complement is A370642, without ones A370644.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]], Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]

Formula

a(2^n - 1) = A367902(n).
Partial sums of A370639.

Extensions

a(19)-a(40) from Alois P. Heinz, Mar 09 2024

A367771 Number of ways to choose a different prime index of each prime index of 2n + 1.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 1, 1, 3, 0, 2, 0, 0, 2, 1, 1, 2, 3, 1, 1, 2, 0, 2, 0, 1, 4, 1, 0, 1, 3, 0, 1, 1, 2, 3, 2, 0, 2, 2, 0, 1, 1, 1, 4, 2, 1, 3, 2, 0, 2, 3, 0, 3, 1, 1, 3, 0, 0, 2, 0, 1, 0, 1, 1, 5, 0, 0, 2, 2, 2, 2, 2, 0, 2, 4, 0, 1, 1, 0, 4, 2, 1, 2, 2, 0, 4
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of prime indices of 427 = 2*213 + 1 are {{1,1},{1,2,2}}, with four ways to choose (1,2), so a(213) = 4.
The prime indices of prime indices of 1469 = 2*734 + 1 are {{1,2},{1,2,3}}, with four choices (1,2), (1,3), (2,1), (2,3), so a(734) = 4.
		

Crossrefs

The "extended" version below includes alternating zeros at even positions.
Extended positions of zeros are A355529, binary A367907.
The extended version for binary indices is A367905.
Extended positions of nonzeros are A368100, binary A367906.
Extended positions of ones are A368101, binary A367908.
The extended version without distinctness is A355741, for multisets A355744.
A058891 counts set-systems, covering A003465, connected A323818.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124010 gives prime signature, sorted A118914, length A001221, sum A001222.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[Select[Tuples[prix/@prix[2n+1]], UnsameQ@@#&]],{n,0,100}]

A324173 Regular triangle read by rows where T(n,k) is the number of set partitions of {1,...,n} with k topologically connected components.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 2, 6, 6, 1, 0, 6, 15, 20, 10, 1, 0, 21, 51, 65, 50, 15, 1, 0, 85, 203, 252, 210, 105, 21, 1, 0, 385, 912, 1120, 938, 560, 196, 28, 1, 0, 1907, 4527, 5520, 4620, 2898, 1302, 336, 36, 1, 0, 10205, 24370, 29700, 24780, 15792, 7812, 2730, 540, 45, 1
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2019

Keywords

Comments

A set partition is crossing if it contains a pair of blocks of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.
The topologically connected components of a set partition correspond to the blocks of its minimal non-crossing coarsening.

Examples

			Triangle begins:
     1
     0     1
     0     1     1
     0     1     3     1
     0     2     6     6     1
     0     6    15    20    10     1
     0    21    51    65    50    15     1
     0    85   203   252   210   105    21     1
     0   385   912  1120   938   560   196    28     1
     0  1907  4527  5520  4620  2898  1302   336    36     1
     0 10205 24370 29700 24780 15792  7812  2730   540    45     1
Row n = 4 counts the following set partitions:
  {{1234}}    {{1}{234}}  {{1}{2}{34}}  {{1}{2}{3}{4}}
  {{13}{24}}  {{12}{34}}  {{1}{23}{4}}
              {{123}{4}}  {{12}{3}{4}}
              {{124}{3}}  {{1}{24}{3}}
              {{134}{2}}  {{13}{2}{4}}
              {{14}{23}}  {{14}{2}{3}}
		

Crossrefs

Programs

  • Mathematica
    croXQ[stn_]:=MatchQ[stn,{_,{_,x_,_,y_,_},_,{_,z_,_,t_,_},_}/;x0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    crosscmpts[stn_]:=csm[Union[Subsets[stn,{1}],Select[Subsets[stn,{2}],croXQ]]];
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    Table[Length[Select[sps[Range[n]],Length[crosscmpts[#]]==k&]],{n,0,8},{k,0,n}]
Previous Showing 21-30 of 111 results. Next