cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 41-50 of 111 results. Next

A323819 Number of non-isomorphic connected set-systems covering n vertices.

Original entry on oeis.org

1, 1, 3, 30, 1912, 18662590, 12813206131799685, 33758171486592987138461432668177794, 1435913805026242504952006868879460423767388571975632398910903473535427583
Offset: 0

Views

Author

Gus Wiseman, Jan 30 2019

Keywords

Examples

			Non-isomorphic representatives of the a(3) = 30 set-systems:
  {{1,2,3}}
  {{3},{1,2,3}}
  {{1,3},{2,3}}
  {{2,3},{1,2,3}}
  {{2},{3},{1,2,3}}
  {{2},{1,3},{2,3}}
  {{3},{1,3},{2,3}}
  {{1},{2,3},{1,2,3}}
  {{3},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2,3}}
  {{1},{2},{1,3},{2,3}}
  {{2},{3},{1,3},{2,3}}
  {{1},{3},{2,3},{1,2,3}}
  {{2},{3},{2,3},{1,2,3}}
  {{3},{1,2},{1,3},{2,3}}
  {{2},{1,3},{2,3},{1,2,3}}
  {{3},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,3},{2,3}}
  {{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{2,3},{1,2,3}}
  {{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{1,3},{2,3},{1,2,3}}
  {{2},{3},{1,3},{2,3},{1,2,3}}
  {{3},{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3}}
  {{1},{2},{3},{1,3},{2,3},{1,2,3}}
  {{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
  {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}
		

Crossrefs

Cf. A000295, A003465, A016031, A048143, A055621 (not necessarily connected), A293510, A317795, A323817, A323818 (labeled case).

Programs

  • Mathematica
    nmax = 12;
    b[n_, i_, l_] := b[n, i, l] = If[n == 0, 2^Function[w, Sum[Product[2^GCD[t, l[[h]]], {h, 1, Length[l]}], {t, 1, w}]/w][If[l == {}, 1, LCM @@ l]], If[i < 1, 0, Sum[b[n - i*j, i - 1, Join[l, Table[i, {j}]]]/j!/i^j, {j, 0, n/i}]]];
    f[n_] := If[n == 0, 2, b[n, n, {}] - b[n - 1, n - 1, {}]]/2;
    A055621 = f /@ Range[0, nmax];
    mob[m_, n_] := If[Mod[m, n] == 0, MoebiusMu[m/n], 0];
    EULERi[b_] := Module[{a, c, i, d}, c = {}; For[i = 1, i <= Length[b], i++, c = Append[c, i*b[[i]] - Sum[c[[d]]*b[[i - d]], {d, 1, i - 1}]]]; a = {}; For[i = 1, i <= Length[b], i++, a = Append[a, (1/i)*Sum[mob[i, d]*c[[d]], {d, 1, i}]]]; Return[a]];
    Join[{1}, EULERi[A055621 // Rest]] (* Jean-François Alcover, Jan 31 2020, after Alois P. Heinz in A055621 *)

Formula

Inverse Euler transform of A055621.

A367916 Number of sets of nonempty subsets of {1..n} with the same number of edges as covered vertices.

Original entry on oeis.org

1, 2, 6, 45, 1376, 161587, 64552473, 85987037645, 386933032425826, 6005080379837219319, 328011924848834642962619, 64153024576968812343635391868, 45547297603829979923254392040011994, 118654043008142499115765307533395739785599
Offset: 0

Views

Author

Gus Wiseman, Dec 08 2023

Keywords

Examples

			The a(0) = 1 through a(2) = 6 set-systems:
  {}  {}     {}
      {{1}}  {{1}}
             {{2}}
             {{1},{2}}
             {{1},{1,2}}
             {{2},{1,2}}
		

Crossrefs

The covering case is A054780.
For graphs we have A367862, covering A367863, unlabeled A006649.
These set-systems have ranks A367917.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts set-systems covering {1..n}, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.
A059201 counts covering T_0 set-systems.
A136556 counts set-systems on {1..n} with n edges.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]]], Length[Union@@#]==Length[#]&]],{n,0,3}]
  • PARI
    \\ Here b(n) is A054780(n).
    b(n) = sum(k=0, n, (-1)^(n-k) * binomial(n,k) * binomial(2^k-1, n))
    a(n) = sum(k=0, n, binomial(n,k) * b(k)) \\ Andrew Howroyd, Dec 29 2023

Formula

Binomial transform of A054780.

A370638 Number of subsets of {1..n} such that a unique set can be obtained by choosing a different binary index of each element.

Original entry on oeis.org

1, 2, 4, 6, 12, 19, 30, 45, 90, 147, 230, 343, 504, 716, 994, 1352, 2704, 4349, 6469, 9162, 12585, 16862, 22122, 28617, 36653, 46431, 58075, 72097, 88456, 107966, 130742, 157647, 315294, 494967, 704753, 950080, 1234301, 1565165, 1945681, 2387060, 2890368, 3470798
Offset: 0

Views

Author

Gus Wiseman, Mar 09 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The set {3,4} has binary indices {{1,2},{3}}, with two choices {1,3}, {2,3}, so is not counted under a(4).
The a(0) = 1 through a(5) = 19 subsets:
  {}  {}   {}     {}     {}       {}
      {1}  {1}    {1}    {1}      {1}
           {2}    {2}    {2}      {2}
           {1,2}  {1,2}  {4}      {4}
                  {1,3}  {1,2}    {1,2}
                  {2,3}  {1,3}    {1,3}
                         {1,4}    {1,4}
                         {2,3}    {1,5}
                         {2,4}    {2,3}
                         {1,2,4}  {2,4}
                         {1,3,4}  {4,5}
                         {2,3,4}  {1,2,4}
                                  {1,2,5}
                                  {1,3,4}
                                  {1,3,5}
                                  {2,3,4}
                                  {2,3,5}
                                  {2,4,5}
                                  {3,4,5}
		

Crossrefs

Set systems of this type are counted by A367904, ranks A367908.
A version for MM-numbers of multisets is A368101.
For prime indices we have A370584.
This is the unique version of A370636, complement A370637.
The maximal case is A370640, differences A370641.
Factorizations of this type are counted by A370645.
The case A370818 is the restriction to A000225.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Table[Length[Select[Subsets[Range[n]],Length[Union[Sort /@ Select[Tuples[bpe/@#],UnsameQ@@#&]]]==1&]],{n,0,10}]

Formula

a(2^n - 1) = A370818(n).

Extensions

More terms from Jinyuan Wang, Mar 28 2025

A371452 Number of connected components of the prime indices of the binary indices of n.

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 3, 1, 2, 1, 2, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 2, 3, 3, 4, 3, 4, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 2, 3, 3, 4, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5
Offset: 1

Views

Author

Gus Wiseman, Apr 01 2024

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.

Examples

			The prime indices of binary indices of 281492156579880 are {{1,1},{1,2},{3,4},{4,4}}, with 2 connected components {{1,1},{1,2}} and {{3,4},{4,4}}, so a(281492156579880) = 2.
		

Crossrefs

Positions of first appearances are A080355, opposite A325782.
For prime indices of prime indices we have A305079, ones A305078.
For binary indices of binary indices we have A326753, ones A326749.
Positions of ones are A371291.
For binary indices of prime indices we have A371451, ones A325118.
A001187 counts connected graphs.
A007718 counts non-isomorphic connected multiset partitions.
A048143 counts connected antichains of sets.
A048793 lists binary indices, reverse A272020, length A000120, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A326964 counts connected set-systems, covering A323818.

Programs

  • Mathematica
    csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}], Length[Intersection@@s[[#]]]>0&]},If[c=={},s, csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Length[csm[prix/@bix[n]]],{n,100}]

A054780 Number of n-covers of a labeled n-set.

Original entry on oeis.org

1, 1, 3, 32, 1225, 155106, 63602770, 85538516963, 386246934638991, 6001601072676524540, 327951891446717800997416, 64149416776011080449232990868, 45546527789182522411309599498741023, 118653450898277491435912500458608964207578
Offset: 0

Views

Author

Vladeta Jovovic, May 21 2000

Keywords

Comments

Also, number of n X n rational {0,1}-matrices with no zero rows or columns and with all rows distinct, up to permutation of rows.

Examples

			From _Gus Wiseman_, Dec 19 2023: (Start)
Number of ways to choose n nonempty sets with union {1..n}. For example, the a(3) = 32 covers are:
  {1}{2}{3}  {1}{2}{13}  {1}{2}{123}  {1}{12}{123}  {12}{13}{123}
             {1}{2}{23}  {1}{3}{123}  {1}{13}{123}  {12}{23}{123}
             {1}{3}{12}  {1}{12}{13}  {1}{23}{123}  {13}{23}{123}
             {1}{3}{23}  {1}{12}{23}  {2}{12}{123}
             {2}{3}{12}  {1}{13}{23}  {2}{13}{123}
             {2}{3}{13}  {2}{3}{123}  {2}{23}{123}
                         {2}{12}{13}  {3}{12}{123}
                         {2}{12}{23}  {3}{13}{123}
                         {2}{13}{23}  {3}{23}{123}
                         {3}{12}{13}  {12}{13}{23}
                         {3}{12}{23}
                         {3}{13}{23}
(End)
		

Crossrefs

Main diagonal of A055154.
Covers with any number of edges are counted by A003465, unlabeled A055621.
Connected graphs of this type are counted by A057500, unlabeled A001429.
This is the covering case of A136556.
The case of graphs is A367863, covering case of A116508, unlabeled A006649.
Binomial transform is A367916.
These set-systems have ranks A367917.
The unlabeled version is A368186.
A006129 counts covering graphs, connected A001187, unlabeled A002494.
A046165 counts minimal covers, ranks A309326.

Programs

  • Mathematica
    Join[{1}, Table[Sum[StirlingS1[n+1, k+1]*(2^k - 1)^n, {k, 0, n}]/n!, {n, 1, 15}]] (* Vaclav Kotesovec, Jun 04 2022 *)
    Table[Length[Select[Subsets[Rest[Subsets[Range[n]]],{n}],Union@@#==Range[n]&]],{n,0,4}] (* Gus Wiseman, Dec 19 2023 *)
  • PARI
    a(n) = sum(k=0, n, (-1)^k*binomial(n, k)*binomial(2^(n-k)-1, n)) \\ Andrew Howroyd, Jan 20 2024

Formula

a(n) = Sum_{k=0..n} (-1)^k*binomial(n, k)*binomial(2^(n-k)-1, n).
a(n) = (1/n!)*Sum_{k=0..n} Stirling1(n+1, k+1)*(2^k-1)^n.
G.f.: Sum_{n>=0} log(1+(2^n-1)*x)^n/((1+(2^n-1)*x)*n!). - Paul D. Hanna and Vladeta Jovovic, Jan 16 2008
a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jun 04 2022
Inverse binomial transform of A367916. - Gus Wiseman, Dec 19 2023

A326870 Number of connectedness systems covering n vertices.

Original entry on oeis.org

1, 1, 5, 77, 6377, 8097721, 1196051135917
Offset: 0

Views

Author

Gus Wiseman, Jul 29 2019

Keywords

Comments

We define a connectedness system (investigated by Vim van Dam in 2002) to be a set of finite nonempty sets (edges) that is closed under taking the union of any two overlapping edges. It is covering if every vertex belongs to some edge.

Examples

			The a(2) = 5 connectedness systems:
  {{1,2}}
  {{1},{2}}
  {{1},{1,2}}
  {{2},{1,2}}
  {{1},{2},{1,2}}
		

Crossrefs

Inverse binomial transform of A326866 (the non-covering case).
Exponential transform of A326868 (the connected case).
The unlabeled case is A326871.
The BII-numbers of these set-systems are A326872.
The case without singletons is A326877.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],Union@@#==Range[n]&&SubsetQ[#,Union@@@Select[Tuples[#,2],Intersection@@#!={}&]]&]],{n,0,4}]

Extensions

a(6) corrected by Christian Sievers, Oct 28 2023

A367909 Numbers n such that there is more than one way to choose a different binary index of each binary index of n.

Original entry on oeis.org

4, 12, 16, 18, 20, 32, 33, 36, 48, 52, 64, 65, 66, 68, 72, 76, 80, 82, 84, 96, 97, 100, 112, 132, 140, 144, 146, 148, 160, 161, 164, 176, 180, 192, 193, 194, 196, 200, 204, 208, 210, 212, 224, 225, 228, 240, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288
Offset: 1

Views

Author

Gus Wiseman, Dec 11 2023

Keywords

Comments

Also BII-numbers of set-systems (sets of nonempty sets) satisfying a strict version of the axiom of choice in more than one way.
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			The set-system {{1},{1,2},{1,3}} with BII-number 21 satisfies the axiom in only one way (1,2,3), so 21 is not in the sequence.
The terms together with the corresponding set-systems begin:
   4: {{1,2}}
  12: {{1,2},{3}}
  16: {{1,3}}
  18: {{2},{1,3}}
  20: {{1,2},{1,3}}
  32: {{2,3}}
  33: {{1},{2,3}}
  36: {{1,2},{2,3}}
  48: {{1,3},{2,3}}
  52: {{1,2},{1,3},{2,3}}
  64: {{1,2,3}}
  65: {{1},{1,2,3}}
  66: {{2},{1,2,3}}
  68: {{1,2},{1,2,3}}
  72: {{3},{1,2,3}}
		

Crossrefs

These set-systems are counted by A367772.
Positions of terms > 1 in A367905, firsts A367910, sorted firsts A367911.
If there is at least one choice we get A367906, counted by A367902.
If there are no choices we get A367907, counted by A367903.
If there is one unique choice we get A367908, counted by A367904.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A368098 counts unlabeled multiset partitions per axiom, complement A368097.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100], Length[Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]]>1&]

Formula

A367911 Sorted positions of first appearances in A367905.

Original entry on oeis.org

1, 4, 7, 20, 68, 320, 352, 1088, 3136, 5184, 13376, 16704, 17472, 70720, 82240, 83008, 90112, 90176
Offset: 1

Views

Author

Gus Wiseman, Dec 16 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			The terms together with the corresponding set-systems begin:
      1: {{1}}
      4: {{1,2}}
      7: {{1},{2},{1,2}}
     20: {{1,2},{1,3}}
     68: {{1,2},{1,2,3}}
    320: {{1,2,3},{1,4}}
    352: {{2,3},{1,2,3},{1,4}}
   1088: {{1,2,3},{1,2,4}}
   3136: {{1,2,3},{1,2,4},{3,4}}
   5184: {{1,2,3},{1,2,4},{1,3,4}}
  13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  16704: {{1,2,3},{1,4},{1,2,3,4}}
  17472: {{1,2,3},{1,2,4},{1,2,3,4}}
  70720: {{1,2,3},{1,2,4},{1,3,4},{1,5}}
  82240: {{1,2,3},{1,4},{1,2,3,4},{1,5}}
		

Crossrefs

Sorted positions of first appearances in A367905.
The unsorted version is A367910.
Multisets without distinctness are A367915, unsorted A367913.
Without distinctness we have A368112, unsorted A368111.
For sets instead of sequences we have A368185, unsorted A368184.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    c=Table[Length[Select[Tuples[bpe/@bpe[n]],UnsameQ@@#&]],{n,1000}];
    Select[Range[Length[c]],FreeQ[Take[c,#-1],c[[#]]]&]

A367772 Number of sets of nonempty subsets of {1..n} satisfying a strict version of the axiom of choice in more than one way.

Original entry on oeis.org

0, 0, 1, 23, 1105, 154941, 66072394, 88945612865, 396990456067403
Offset: 0

Views

Author

Gus Wiseman, Dec 12 2023

Keywords

Comments

The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.

Examples

			Non-isomorphic representatives of the a(3) = 23 set-systems:
  {{1,2}}
  {{1,2,3}}
  {{1},{2,3}}
  {{1},{1,2,3}}
  {{1,2},{1,3}}
  {{1,2},{1,2,3}}
  {{1},{2,3},{1,2,3}}
  {{1,2},{1,3},{2,3}}
  {{1,2},{1,3},{1,2,3}}
		

Crossrefs

For at least one choice we have A367902.
For no choices we have A367903, no singletons A367769, ranks A367907.
For a unique choice we have A367904, ranks A367908.
These set-systems have ranks A367909.
A000372 counts antichains, covering A006126, nonempty A014466.
A003465 counts covering set-systems, unlabeled A055621.
A058891 counts set-systems, unlabeled A000612.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Subsets[Range[n]]], Length[Select[Tuples[#], UnsameQ@@#&]]>1&]], {n,0,3}]

Formula

A367903(n) + A367904(n) + a(n) = A058891(n).

Extensions

a(5)-a(8) from Christian Sievers, Jul 26 2024

A367910 Least number k such that there are exactly n ways to choose a different binary index of each binary index of k.

Original entry on oeis.org

7, 1, 4, 20, 68, 320, 352, 1088, 3136, 13376, 16704, 5184, 82240, 70720, 17472
Offset: 0

Views

Author

Gus Wiseman, Dec 16 2023

Keywords

Comments

A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.

Examples

			The terms together with the corresponding set-systems begin:
      7: {{1},{2},{1,2}}
      1: {{1}}
      4: {{1,2}}
     20: {{1,2},{1,3}}
     68: {{1,2},{1,2,3}}
    320: {{1,2,3},{1,4}}
    352: {{2,3},{1,2,3},{1,4}}
   1088: {{1,2,3},{1,2,4}}
   3136: {{1,2,3},{1,2,4},{3,4}}
  13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
  16704: {{1,2,3},{1,4},{1,2,3,4}}
   5184: {{1,2,3},{1,2,4},{1,3,4}}
  82240: {{1,2,3},{1,4},{1,2,3,4},{1,5}}
  70720: {{1,2,3},{1,2,4},{1,3,4},{1,5}}
		

Crossrefs

Positions of first appearances in A367905.
The sorted version is A367911.
For multisets w/o distinctness: A367913, firsts of A367912, sorted A367915.
Not requiring distinctness gives A368111, firsts of A368109, sorted A368112.
For multisets of indices we have A368184, firsts of A368183, sorted A368185.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.

Programs

  • Mathematica
    bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    c=Table[Length[Select[Tuples[bpe/@bpe[n]],UnsameQ@@#&]],{n,1000}];
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
    Table[Position[c,n][[1,1]],{n,0,spnm[c]}]
Previous Showing 41-50 of 111 results. Next