A368101
Numbers of which there is exactly one way to choose a different prime factor of each prime index.
Original entry on oeis.org
1, 3, 5, 11, 15, 17, 31, 33, 39, 41, 51, 55, 59, 65, 67, 83, 85, 87, 93, 109, 111, 123, 127, 129, 155, 157, 165, 177, 179, 187, 191, 201, 205, 211, 213, 235, 237, 241, 249, 255, 267, 277, 283, 295, 303, 305, 319, 321, 327, 331, 335, 341, 353, 365, 367, 381
Offset: 1
The prime indices of 2795 are {3,6,14}, with prime factors {{3},{2,3},{2,7}}, and the only choice with different terms is {3,2,7}, so 2795 is in the sequence.
The terms together with their prime indices of prime indices begin:
1: {}
3: {{1}}
5: {{2}}
11: {{3}}
15: {{1},{2}}
17: {{4}}
31: {{5}}
33: {{1},{3}}
39: {{1},{1,2}}
41: {{6}}
51: {{1},{4}}
55: {{2},{3}}
59: {{7}}
65: {{2},{1,2}}
67: {{8}}
83: {{9}}
85: {{2},{4}}
87: {{1},{1,3}}
93: {{1},{5}}
109: {{10}}
111: {{1},{1,1,2}}
The version for binary indices is
A367908, positions of ones in
A367905.
For any number of choices we have
A368100.
For a unique set instead of sequence we have
A370647, counted by
A370594.
A355741 chooses a prime factor of each prime index, multisets
A355744.
-
prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100], Length[Select[Tuples[prix/@prix[#]], UnsameQ@@#&]]==1&]
A368409
Number of non-isomorphic connected set-systems of weight n contradicting a strict version of the axiom of choice.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 3, 5, 16, 41, 130
Offset: 0
Non-isomorphic representatives of the a(4) = 1 through a(8) = 16 set-systems:
{1}{2}{12} . {1}{2}{13}{23} {1}{3}{23}{123} {1}{5}{15}{2345}
{1}{2}{3}{123} {1}{4}{14}{234} {2}{13}{23}{123}
{2}{3}{13}{23} {2}{3}{23}{123} {3}{13}{23}{123}
{3}{12}{13}{23} {3}{4}{34}{1234}
{1}{2}{3}{13}{23} {1}{2}{13}{24}{34}
{1}{2}{3}{14}{234}
{1}{2}{3}{23}{123}
{1}{2}{3}{4}{1234}
{1}{3}{4}{14}{234}
{2}{3}{12}{13}{23}
{2}{3}{13}{24}{34}
{2}{3}{14}{24}{34}
{2}{3}{4}{14}{234}
{2}{4}{13}{24}{34}
{3}{4}{13}{24}{34}
{3}{4}{14}{24}{34}
This is the connected case of
A368094.
Allowing repeat edges only: connected case of
A368421 (complement
A368422).
-
sps[{}]:={{}}; sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]& /@ sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
mpm[n_]:=Join@@Table[Union[Sort[Sort /@ (#/.x_Integer:>s[[x]])]&/@sps[Range[n]]],{s,Flatten[MapIndexed[Table[#2, {#1}]&,#]]&/@IntegerPartitions[n]}];
brute[m_]:=First[Sort[Table[Sort[Sort/@(m/.Rule@@@Table[{i,p[[i]]}, {i,Length[p]}])],{p,Permutations[Union@@m]}]]];
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]], {2}],Length[Intersection@@s[[#]]]>0&]}, If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
Table[Length[Union[brute/@Select[mpm[n], UnsameQ@@#&&And@@UnsameQ@@@#&&Length[csm[#]]==1&&Select[Tuples[#], UnsameQ@@#&]=={}&]]],{n,0,6}]
A370640
Number of maximal subsets of {1..n} such that it is possible to choose a different binary index of each element.
Original entry on oeis.org
1, 1, 1, 3, 3, 8, 17, 32, 32, 77, 144, 242, 383, 580, 843, 1201, 1201, 2694, 4614, 7096, 10219, 14186, 19070, 25207, 32791, 42160, 53329, 66993, 82811, 101963, 124381, 151286, 151286, 324695, 526866, 764438, 1038089, 1358129, 1725921, 2154668, 2640365, 3202985
Offset: 0
The a(0) = 1 through a(6) = 17 subsets:
{} {1} {1,2} {1,2} {1,2,4} {1,2,4} {1,2,4}
{1,3} {1,3,4} {1,2,5} {1,2,5}
{2,3} {2,3,4} {1,3,4} {1,2,6}
{1,3,5} {1,3,4}
{2,3,4} {1,3,5}
{2,3,5} {1,3,6}
{2,4,5} {1,4,6}
{3,4,5} {1,5,6}
{2,3,4}
{2,3,5}
{2,3,6}
{2,4,5}
{2,5,6}
{3,4,5}
{3,4,6}
{3,5,6}
{4,5,6}
The a(0) = 1 through a(6) = 17 set-systems:
{1} {1}{2} {1}{2} {1}{2}{3} {1}{2}{3} {1}{2}{3}
{1}{12} {1}{12}{3} {1}{12}{3} {1}{12}{3}
{2}{12} {2}{12}{3} {1}{2}{13} {1}{2}{13}
{2}{12}{3} {1}{2}{23}
{2}{3}{13} {1}{3}{23}
{1}{12}{13} {2}{12}{3}
{12}{3}{13} {2}{3}{13}
{2}{12}{13} {1}{12}{13}
{1}{12}{23}
{1}{13}{23}
{12}{3}{13}
{12}{3}{23}
{2}{12}{13}
{2}{12}{23}
{2}{13}{23}
{3}{13}{23}
{12}{13}{23}
The case of a unique choice is
A370638.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A307984 counts Q-bases of logarithms of positive integers.
A355741 counts choices of a prime factor of each prime index.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Table[Length[Select[Subsets[Range[n],{IntegerLength[n,2]}], Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]
-
lista(nn) = my(b, m=Map(Mat([[[]], 1])), t, u, v, w, z); for(n=0, nn, t=Mat(m)~; b=Vecrev(binary(n)); u=select(i->b[i], [1..#b]); for(i=1, #t, v=t[1, i]; w=List([]); for(j=1, #v, for(k=1, #u, if(!setsearch(v[j], u[k]), listput(w, setunion(v[j], [u[k]]))))); w=Set(w); if(#w, z=0; mapisdefined(m, w, &z); mapput(m, w, z+t[2, i]))); print1(mapget(m, [[1..#b]]), ", ")); \\ Jinyuan Wang, Mar 28 2025
A327130
Number of set-systems covering n vertices with spanning edge-connectivity 2.
Original entry on oeis.org
0, 0, 0, 32, 9552
Offset: 0
The a(3) = 32 set-systems:
{12}{13}{23} {1}{12}{13}{23} {1}{2}{12}{13}{23} {1}{2}{3}{12}{13}{23}
{12}{13}{123} {2}{12}{13}{23} {1}{3}{12}{13}{23} {1}{2}{3}{12}{13}{123}
{12}{23}{123} {3}{12}{13}{23} {2}{3}{12}{13}{23} {1}{2}{3}{12}{23}{123}
{13}{23}{123} {1}{12}{13}{123} {1}{2}{12}{13}{123} {1}{2}{3}{13}{23}{123}
{1}{12}{23}{123} {1}{2}{12}{23}{123}
{1}{13}{23}{123} {1}{2}{13}{23}{123}
{2}{12}{13}{123} {1}{3}{12}{13}{123}
{2}{12}{23}{123} {1}{3}{12}{23}{123}
{2}{13}{23}{123} {1}{3}{13}{23}{123}
{3}{12}{13}{123} {2}{3}{12}{13}{123}
{3}{12}{23}{123} {2}{3}{12}{23}{123}
{3}{13}{23}{123} {2}{3}{13}{23}{123}
The BII-numbers of these set-systems are
A327108.
Set-systems with spanning edge-connectivity 1 are
A327145.
The restriction to simple graphs is
A327146.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],spanEdgeConn[Range[n],#]==2&]],{n,0,3}]
A327145
Number of connected set-systems with n vertices and at least one bridge (spanning edge-connectivity 1).
Original entry on oeis.org
0, 1, 4, 56, 4640
Offset: 0
The BII-numbers of these set-systems are
A327111.
Set systems with non-spanning edge-connectivity 1 are
A327196, with covering case
A327129.
Set systems with spanning edge-connectivity 2 are
A327130.
-
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]],2],And[OrderedQ[#],UnsameQ@@#,Length[Intersection@@s[[#]]]>0]&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
spanEdgeConn[vts_,eds_]:=Length[eds]-Max@@Length/@Select[Subsets[eds],Union@@#!=vts||Length[csm[#]]!=1&];
Table[Length[Select[Subsets[Subsets[Range[n],{1,n}]],spanEdgeConn[Range[n],#]==1&]],{n,0,3}]
A327351
Triangle read by rows where T(n,k) is the number of antichains of nonempty sets covering n vertices with vertex-connectivity exactly k.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 4, 3, 2, 0, 30, 40, 27, 17, 0, 546, 1365, 1842, 1690, 1451, 0, 41334
Offset: 0
Triangle begins:
1
1 0
1 1 0
4 3 2 0
30 40 27 17 0
546 1365 1842 1690 1451 0
The version for vertex-connectivity >= k is
A327350.
The version for spanning edge-connectivity is
A327352.
The version for non-spanning edge-connectivity is
A327353, with covering case
A327357.
-
csm[s_]:=With[{c=Select[Subsets[Range[Length[s]],{2}],Length[Intersection@@s[[#]]]>0&]},If[c=={},s,csm[Sort[Append[Delete[s,List/@c[[1]]],Union@@s[[c[[1]]]]]]]]];
stableSets[u_,Q_]:=If[Length[u]==0,{{}},With[{w=First[u]},Join[stableSets[DeleteCases[u,w],Q],Prepend[#,w]&/@stableSets[DeleteCases[u,r_/;r==w||Q[r,w]||Q[w,r]],Q]]]];
vertConnSys[vts_,eds_]:=Min@@Length/@Select[Subsets[vts],Function[del,Length[del]==Length[vts]-1||csm[DeleteCases[DeleteCases[eds,Alternatives@@del,{2}],{}]]!={Complement[vts,del]}]]
Table[Length[Select[stableSets[Subsets[Range[n],{1,n}],SubsetQ],Union@@#==Range[n]&&vertConnSys[Range[n],#]==k&]],{n,0,4},{k,0,n}]
A367917
BII-numbers of set-systems with the same number of edges as covered vertices.
Original entry on oeis.org
0, 1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 17, 19, 21, 22, 24, 26, 28, 34, 35, 37, 38, 40, 41, 44, 49, 50, 52, 56, 67, 69, 70, 73, 74, 76, 81, 82, 84, 88, 97, 98, 100, 104, 112, 128, 129, 130, 131, 133, 134, 136, 137, 138, 139, 141, 142, 145, 147, 149, 150, 152
Offset: 1
The terms together with the corresponding set-systems begin:
0: {}
1: {{1}}
2: {{2}}
3: {{1},{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
13: {{1},{1,2},{3}}
14: {{2},{1,2},{3}}
17: {{1},{1,3}}
19: {{1},{2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
24: {{3},{1,3}}
26: {{2},{3},{1,3}}
28: {{1,2},{3},{1,3}}
34: {{2},{2,3}}
35: {{1},{2},{2,3}}
37: {{1},{1,2},{2,3}}
A070939 gives length of binary expansion.
A136556 counts set-systems on {1..n} with n edges.
Cf.
A057500,
A059201,
A072639,
A096111,
A116508,
A309326,
A326031,
A326702,
A326753,
A326754,
A367770,
A367902,
A367905.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]],1];
Select[Range[0,100], Length[bpe[#]]==Length[Union@@bpe/@bpe[#]]&]
A370639
Number of subsets of {1..n} containing n such that it is possible to choose a different binary index of each element.
Original entry on oeis.org
0, 1, 2, 3, 7, 10, 15, 22, 61, 81, 112, 154, 207, 276, 355, 464, 1771, 2166, 2724, 3445, 4246, 5292, 6420, 7922, 9586, 11667, 13768, 16606, 19095, 22825, 26498, 31421, 187223, 213684, 247670, 289181, 331301, 385079, 440411, 510124, 575266, 662625, 747521
Offset: 0
The a(0) = 0 through a(6) = 15 subsets:
. {1} {2} {3} {4} {5} {6}
{1,2} {1,3} {1,4} {1,5} {1,6}
{2,3} {2,4} {2,5} {2,6}
{3,4} {3,5} {3,6}
{1,2,4} {4,5} {4,6}
{1,3,4} {1,2,5} {5,6}
{2,3,4} {1,3,5} {1,2,6}
{2,3,5} {1,3,6}
{2,4,5} {1,4,6}
{3,4,5} {1,5,6}
{2,3,6}
{2,5,6}
{3,4,6}
{3,5,6}
{4,5,6}
Unlabeled graphs of this type are counted by
A134964, complement
A140637.
Simple graphs not of this type are counted by
A367867, covering
A367868.
Set systems uniquely of this type are counted by
A367904, ranks
A367908.
Unlabeled multiset partitions of this type are
A368098, complement
A368097.
For prime instead of binary indices we have
A370586, differences of
A370582.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
Cf.
A000612,
A326702,
A355739,
A355740,
A367770,
A367772,
A367905,
A367909,
A367912,
A368094,
A368095,
A368109,
A370640.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
Table[Length[Select[Subsets[Range[n]],MemberQ[#,n] && Select[Tuples[bpe/@#],UnsameQ@@#&]!={}&]],{n,0,10}]
A367913
Least number k such that there are exactly n ways to choose a multiset consisting of a binary index of each binary index of k.
Original entry on oeis.org
1, 4, 64, 20, 68, 320, 52, 84, 16448, 324, 832, 116, 1104, 308, 816, 340, 836, 848, 1108, 1136, 1360, 3152, 16708, 372, 5188, 5216, 852, 880, 2884, 1364, 13376, 1392, 3184, 3424, 17220, 5204, 5220, 2868, 5728, 884, 19536, 66896, 2900, 1396, 21572, 3188, 3412
Offset: 1
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
64: {{1,2,3}}
20: {{1,2},{1,3}}
68: {{1,2},{1,2,3}}
320: {{1,2,3},{1,4}}
52: {{1,2},{1,3},{2,3}}
84: {{1,2},{1,3},{1,2,3}}
16448: {{1,2,3},{1,2,3,4}}
324: {{1,2},{1,2,3},{1,4}}
832: {{1,2,3},{1,4},{2,4}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
A version for multisets and divisors is
A355734.
Positions of first appearances in
A367912.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
c=Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]],{n,1000}];
Table[Position[c,n][[1,1]],{n,spnm[c]}]
A367915
Sorted positions of first appearances in A367912 (number of multisets that can be obtained by choosing a binary index of each binary index).
Original entry on oeis.org
1, 4, 20, 52, 64, 68, 84, 116, 308, 320, 324, 340, 372, 816, 832, 836, 848, 852, 880, 884, 1104, 1108, 1136, 1360, 1364, 1392, 1396, 1904, 1908, 2868, 2884, 2900, 2932, 3152, 3184, 3188, 3412, 3424, 3440, 3444, 3952, 3956, 5188, 5204, 5216, 5220, 5236, 5476
Offset: 1
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
20: {{1,2},{1,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
68: {{1,2},{1,2,3}}
84: {{1,2},{1,3},{1,2,3}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
308: {{1,2},{1,3},{2,3},{1,4}}
320: {{1,2,3},{1,4}}
324: {{1,2},{1,2,3},{1,4}}
340: {{1,2},{1,3},{1,2,3},{1,4}}
372: {{1,2},{1,3},{2,3},{1,2,3},{1,4}}
A version for multisets and divisors is
A355734.
Sorted positions of first appearances in
A367912, for sequences
A368109.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
Cf.
A072639,
A309326,
A326031,
A326702,
A326749,
A326753,
A355733,
A355744,
A367905,
A367906,
A367911,
A368112,
A368185.
-
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
c=Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]],{n,10000}];
Select[Range[Length[c]],FreeQ[Take[c,#-1],c[[#]]]&]
Comments