cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 33 results. Next

A324766 Matula-Goebel numbers of recursively anti-transitive rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 16, 17, 19, 20, 21, 22, 23, 25, 27, 29, 31, 32, 33, 34, 35, 40, 44, 46, 49, 50, 51, 53, 57, 59, 62, 63, 64, 67, 68, 71, 73, 77, 79, 80, 81, 83, 85, 87, 88, 92, 93, 95, 97, 99, 100, 103, 109, 115, 118, 121, 124, 125, 127, 128
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

The complement is {6, 12, 13, 14, 15, 18, 24, 26, 28, 30, 36, ...}.
An unlabeled rooted tree is recursively anti-transitive if no branch of a branch of a terminal subtree is a branch of the same subtree.

Examples

			The sequence of recursively anti-transitive rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  10: (o((o)))
  11: ((((o))))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  20: (oo((o)))
  21: ((o)(oo))
  22: (o(((o))))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  29: ((o((o))))
  31: (((((o)))))
  32: (ooooo)
  33: ((o)(((o))))
  34: (o((oo)))
  35: (((o))(oo))
  40: (ooo((o)))
  44: (oo(((o))))
  46: (o((o)(o)))
  49: ((oo)(oo))
  50: (o((o))((o)))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    totantiQ[n_]:=And[Intersection[Union@@primeMS/@primeMS[n],primeMS[n]]=={},And@@totantiQ/@primeMS[n]];
    Select[Range[100],totantiQ]

A324767 Number of recursively anti-transitive rooted identity trees with n nodes.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 5, 9, 17, 33, 63, 126, 254, 511, 1039, 2124, 4371, 9059, 18839, 39339, 82385, 173111, 364829, 771010, 1633313
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is recursively anti-transitive if no branch of a branch of any terminal subtree is a branch of the same subtree. It is an identity tree if there are no repeated branches directly under a common root.
Also the number of finitary sets with n brackets where, at any level, no element of an element of a set is an element of the same set. For example, the a(8) = 9 finitary sets are (o = {}):
{{{{{{{o}}}}}}}
{{{{o,{{o}}}}}}
{{{o,{{{o}}}}}}
{{o,{{{{o}}}}}}
{{{o},{{{o}}}}}
{o,{{{{{o}}}}}}
{o,{{o,{{o}}}}}
{{o},{{{{o}}}}}
{{o},{o,{{o}}}}
The Matula-Goebel numbers of these trees are given by A324766.

Examples

			The a(4) = 1 through a(8) = 9 recursively anti-transitive rooted identity trees:
  (((o)))  (o((o)))   ((o((o))))   (((o((o)))))   ((o)(o((o))))
           ((((o))))  (o(((o))))   ((o)(((o))))   (o((o((o)))))
                      (((((o)))))  ((o(((o)))))   ((((o((o))))))
                                   (o((((o)))))   (((o)(((o)))))
                                   ((((((o))))))  (((o(((o))))))
                                                  ((o)((((o)))))
                                                  ((o((((o))))))
                                                  (o(((((o))))))
                                                  (((((((o)))))))
		

Crossrefs

Cf. A324695, A324751, A324758, A324764 (non-recursive version), A324765 (non-identity version), A324766, A324770, A324839, A324840, A324844.

Programs

  • Mathematica
    iallt[n_]:=Select[Union[Sort/@Join@@(Tuples[iallt/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&&Intersection[Union@@#,#]=={}&];
    Table[Length[iallt[n]],{n,10}]

A324769 Matula-Goebel numbers of fully anti-transitive rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 21, 23, 25, 27, 29, 31, 32, 35, 37, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 64, 65, 67, 71, 73, 77, 79, 81, 83, 85, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 121, 125, 127, 128, 129, 131, 133, 137, 139, 143, 147
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is fully anti-transitive if no proper terminal subtree of any branch of the root is a branch of the root.

Examples

			The sequence of fully anti-transitive rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  11: ((((o))))
  13: ((o(o)))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  21: ((o)(oo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  29: ((o((o))))
  31: (((((o)))))
  32: (ooooo)
  35: (((o))(oo))
  37: ((oo(o)))
  41: (((o(o))))
  43: ((o(oo)))
  47: (((o)((o))))
  49: ((oo)(oo))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fullantiQ[n_]:=Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={};
    Select[Range[100],fullantiQ]

A358456 Number of recursively bi-anti-transitive ordered rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 3, 7, 17, 47, 117, 321, 895, 2556, 7331, 21435, 63116, 187530
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2022

Keywords

Comments

We define an unlabeled ordered rooted tree to be recursively bi-anti-transitive if there are no two branches of the same node such that one is a branch of the other.

Examples

			The a(1) = 1 through a(6) = 17 trees:
  o  (o)  (oo)   (ooo)    (oooo)     (ooooo)
          ((o))  ((oo))   ((ooo))    ((oooo))
                 (((o)))  (((o))o)   (((o))oo)
                          (((oo)))   (((oo))o)
                          ((o)(o))   (((ooo)))
                          (o((o)))   ((o)(oo))
                          ((((o))))  ((oo)(o))
                                     (o((o))o)
                                     (o((oo)))
                                     (oo((o)))
                                     ((((o)))o)
                                     ((((o))o))
                                     ((((oo))))
                                     (((o)(o)))
                                     ((o((o))))
                                     (o(((o))))
                                     (((((o)))))
		

Crossrefs

The unordered version is A324765, ranked by A324766.
The directed version is A358455.
A000108 counts ordered rooted trees, unordered A000081.
A306844 counts anti-transitive rooted trees.
A358453 counts transitive ordered trees, unordered A290689.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],FreeQ[#,{_,x_,_,{_,x_,_},_}|{_,{_,x_,_},_,x_,_}]&]],{n,10}]

A324839 Number of unlabeled rooted identity trees with n nodes where the branches of no branch of the root form a subset of the branches of the root.

Original entry on oeis.org

1, 0, 1, 1, 2, 3, 8, 16, 35, 74, 166, 367, 831, 1878, 4299, 9857, 22775, 52777, 122957, 287337
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

An unlabeled rooted tree is an identity tree if there are no repeated branches directly under the same root.
Also the number of finitary sets with n brackets where no element is also a subset. For example, the a(7) = 8 sets are (o = {}):
{{{{{{o}}}}}}
{{{{o,{o}}}}}
{{{o,{{o}}}}}
{{o,{{{o}}}}}
{{o,{o,{o}}}}
{{{o},{{o}}}}
{{o},{{{o}}}}
{{o},{o,{o}}}

Examples

			The a(1) = 1 through a(8) = 16 rooted identity trees:
  o  ((o))  (((o)))  ((o(o)))   (((o(o))))   ((o)(o(o)))    (((o))(o(o)))
                     ((((o))))  ((o((o))))   ((o(o(o))))    (((o)(o(o))))
                                (((((o)))))  ((((o(o)))))   (((o(o(o)))))
                                             (((o)((o))))   ((o)((o(o))))
                                             (((o((o)))))   ((o)(o((o))))
                                             ((o)(((o))))   ((o((o(o)))))
                                             ((o(((o)))))   ((o(o)((o))))
                                             ((((((o))))))  ((o(o((o)))))
                                                            (((((o(o))))))
                                                            ((((o)((o)))))
                                                            ((((o((o))))))
                                                            (((o)(((o)))))
                                                            (((o(((o))))))
                                                            ((o)((((o)))))
                                                            ((o((((o))))))
                                                            (((((((o)))))))
		

Crossrefs

Programs

  • Mathematica
    idall[n_]:=If[n==1,{{}},Select[Union[Sort/@Join@@(Tuples[idall/@#]&/@IntegerPartitions[n-1])],UnsameQ@@#&]];
    Table[Length[Select[idall[n],And@@Table[!SubsetQ[#,b],{b,#}]&]],{n,10}]

A358454 Number of weakly transitive ordered rooted trees with n nodes.

Original entry on oeis.org

1, 1, 1, 3, 6, 13, 33, 80, 201, 509, 1330, 3432, 8982, 23559, 62189
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2022

Keywords

Comments

We define an unlabeled ordered rooted tree to be weakly transitive if every branch of a branch of the root is itself a branch of the root.

Examples

			The a(1) = 1 through a(6) = 13 trees:
  o  (o)  (oo)  (ooo)   (oooo)   (ooooo)
                ((o)o)  ((o)oo)  ((o)ooo)
                (o(o))  ((oo)o)  ((oo)oo)
                        (o(o)o)  ((ooo)o)
                        (o(oo))  (o(o)oo)
                        (oo(o))  (o(oo)o)
                                 (o(ooo))
                                 (oo(o)o)
                                 (oo(oo))
                                 (ooo(o))
                                 ((o)(o)o)
                                 ((o)o(o))
                                 (o(o)(o))
		

Crossrefs

The unordered version is A290689, ranked by A290822.
The directed version is A358453.
A000081 counts rooted trees.
A306844 counts anti-transitive rooted trees.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],Complement[Union@@#,#]=={}&]],{n,10}]

A358455 Number of recursively anti-transitive ordered rooted trees with n nodes.

Original entry on oeis.org

1, 1, 2, 4, 10, 26, 72, 206, 608, 1830, 5612, 17442, 54866, 174252, 558072, 1800098
Offset: 1

Views

Author

Gus Wiseman, Nov 18 2022

Keywords

Comments

We define an unlabeled ordered rooted tree to be recursively anti-transitive if no branch of a branch of a subtree is a branch of the same subtree farther to the left.

Examples

			The a(1) = 1 through a(5) = 10 trees:
  o  (o)  (oo)   (ooo)    (oooo)
          ((o))  ((o)o)   ((o)oo)
                 ((oo))   ((oo)o)
                 (((o)))  ((ooo))
                          (((o))o)
                          (((o)o))
                          (((oo)))
                          ((o)(o))
                          (o((o)))
                          ((((o))))
		

Crossrefs

The unordered version is A324765, ranked by A324766.
The undirected version is A358456.
A000108 counts ordered rooted trees, unordered A000081.
A306844 counts anti-transitive rooted trees.
A358453 counts transitive ordered trees, unordered A290689.

Programs

  • Mathematica
    aot[n_]:=If[n==1,{{}},Join@@Table[Tuples[aot/@c],{c,Join@@Permutations/@IntegerPartitions[n-1]}]];
    Table[Length[Select[aot[n],FreeQ[#,{_,x_,_,{_,x_,_},_}]&]],{n,10}]

A324752 Number of strict integer partitions of n not containing 1 or any prime indices of the parts.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 2, 3, 1, 4, 4, 4, 5, 6, 7, 10, 9, 12, 12, 16, 17, 22, 22, 26, 31, 35, 37, 46, 50, 55, 66, 70, 82, 90, 101, 114, 127, 143, 159, 172, 202, 215, 246, 267, 301, 327, 366, 402, 447, 491, 545, 600, 655, 722, 795, 875, 964, 1050, 1152, 1259, 1383
Offset: 0

Views

Author

Gus Wiseman, Mar 16 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(2) = 1 through a(17) = 12 strict integer partitions (A...H = 10...17):
  2  3  4  5  6   7   8  9   A   B    C   D    E    F    G    H
              42  43     54  64  65   75  76   86   87   97   98
                  52     63  73  83   84  85   95   96   A6   A7
                         72  82  542  93  94   A4   A5   C4   B6
                                      A2  B2   B3   B4   D3   C5
                                          643  752  C3   E2   D4
                                               842  D2   763  E3
                                                    654  943  854
                                                    843  A42  863
                                                    852       872
                                                              A52
                                                              B42
An example for n = 60 is (19,14,13,7,5,2), with prime indices:
  19: {8}
  14: {1,4}
  13: {6}
   7: {4}
   5: {3}
   2: {1}
None of these prime indices {1,3,4,6,8} belong to the partition, as required.
		

Crossrefs

The subset version is A324742, with maximal case is A324763. The non-strict version is A324757. The Heinz number version is A324761. An infinite version is A304360.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!MemberQ[#,1]&&Intersection[#,PrimePi/@First/@Join@@FactorInteger/@#]=={}&]],{n,0,30}]

A324761 Heinz numbers of integer partitions not containing 1 or any prime indices of the parts.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 41, 43, 47, 49, 51, 53, 57, 59, 61, 63, 65, 67, 71, 73, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99, 101, 103, 107, 109, 113, 115, 121, 123, 125, 127, 129, 131, 133, 137, 139, 143, 147, 149
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   3: {2}
   5: {3}
   7: {4}
   9: {2,2}
  11: {5}
  13: {6}
  17: {7}
  19: {8}
  21: {2,4}
  23: {9}
  25: {3,3}
  27: {2,2,2}
  29: {10}
  31: {11}
  33: {2,5}
  35: {3,4}
  37: {12}
  41: {13}
  43: {14}
		

Crossrefs

The subset version is A324742, with maximal case A324763. The strict integer partition version is A324752. The integer partition version is A324757. An infinite version is A324695.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1,100,2],Intersection[primeMS[#],Union@@primeMS/@primeMS[#]]=={}&]

A324841 Matula-Goebel numbers of fully recursively anti-transitive rooted trees.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 16, 17, 19, 21, 23, 25, 27, 31, 32, 35, 49, 51, 53, 57, 59, 63, 64, 67, 73, 77, 81, 83, 85, 95, 97, 103, 115, 121, 125, 127, 128, 131, 133, 147, 149, 153, 159, 161, 171, 175, 177, 187, 189, 201, 209, 217, 227, 233, 241, 243, 245
Offset: 1

Views

Author

Gus Wiseman, Mar 17 2019

Keywords

Comments

An unlabeled rooted tree is fully recursively anti-transitive if no proper terminal subtree of any terminal subtree is a branch of the larger subtree.

Examples

			The sequence of fully recursively anti-transitive rooted trees together with their Matula-Goebel numbers begins:
   1: o
   2: (o)
   3: ((o))
   4: (oo)
   5: (((o)))
   7: ((oo))
   8: (ooo)
   9: ((o)(o))
  11: ((((o))))
  16: (oooo)
  17: (((oo)))
  19: ((ooo))
  21: ((o)(oo))
  23: (((o)(o)))
  25: (((o))((o)))
  27: ((o)(o)(o))
  31: (((((o)))))
  32: (ooooo)
  35: (((o))(oo))
  49: ((oo)(oo))
  51: ((o)((oo)))
  53: ((oooo))
  57: ((o)(ooo))
  59: ((((oo))))
  63: ((o)(o)(oo))
		

Crossrefs

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    fratQ[n_]:=And[Intersection[Union@@Rest[FixedPointList[Union@@primeMS/@#&,primeMS[n]]],primeMS[n]]=={},And@@fratQ/@primeMS[n]];
    Select[Range[100],fratQ]
Previous Showing 21-30 of 33 results. Next