cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 51-60 of 74 results. Next

A353398 Number of integer partitions of n where the product of multiplicities equals the product of prime shadows of the parts.

Original entry on oeis.org

1, 1, 0, 0, 1, 1, 1, 2, 1, 2, 1, 2, 6, 5, 4, 4, 6, 6, 8, 8, 13, 16, 13, 16, 18, 16, 20, 21, 27, 30, 27, 33, 41, 44, 51, 48, 58, 61, 66, 66, 74, 83, 86, 99, 102, 111, 115, 126, 137, 147, 156
Offset: 0

Views

Author

Gus Wiseman, May 17 2022

Keywords

Comments

We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The a(8) = 1 through a(14) = 4 partitions (A = 10, B = 11):
  3311  711     61111  521111   5511      B11       A1111
        321111         3221111  9111      721111    731111
                                531111    811111    33221111
                                3321111   5221111   422111111
                                22221111  43111111
                                42111111
		

Crossrefs

The LHS (product of multiplicities) is A005361, counted by A266477.
The RHS (product of prime shadows) is A353394, first appearances A353397.
A related comparison is A353396, ranked by A353395.
These partitions are ranked by A353399.
A001222 counts prime factors with multiplicity, distinct A001221.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914.
A181819 gives prime shadow, with an inverse A181821.
A325131 lists numbers relatively prime to their prime shadow.
A325755 lists numbers divisible by their prime shadow, counted by A325702.
A339095 counts partitions by product (or factorizations by sum).

Programs

  • Mathematica
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Table[Length[Select[IntegerPartitions[n],Times@@red/@#==Times@@Length/@Split[#]&]],{n,0,30}]

A324853 First number divisible by n of its own distinct prime indices.

Original entry on oeis.org

1, 2, 6, 30, 330, 4290, 60060, 1021020, 29609580, 917896980, 33962188260, 1290563153880, 52913089309080, 2275262840290440, 106937353493650680, 6309303856125390120, 422723358360401138040, 30013358443588480800840, 2190975166381959098461320
Offset: 0

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
a(n) is the first position of n in A324852.

Examples

			a(6) = 60060 = 2^2 * 3 * 5 * 7 * 11 * 13 has prime indices {1,1,2,3,4,5,6}, and is less than any other number divisible by six of its own distinct prime indices.
		

Crossrefs

Programs

  • C
    See Links section.
    
  • Mathematica
    nn=10000;
    With[{mgs=Table[Count[If[n==1,{},FactorInteger[n]],{p_,_}/;Divisible[n,PrimePi[p]]],{n,nn}]},Table[Position[mgs,i][[1,1]],{i,0,5}]]
  • PARI
    isok(k,n) = {my(f=factor(k)[,1]); sum(j=1, #f, !(k % primepi(f[j]))) == n;}
    a(n) = {my(k=1); while (!isok(k, n), k++); k;} \\ Michel Marcus, Mar 20 2019

Extensions

a(8)-a(9) from Rémy Sigrist, Mar 19 2019
a(10)-a(18) from Michel Lagneau, Aug 19 2019

A331382 Numbers whose sum of prime factors is divisible by their product of prime indices.

Original entry on oeis.org

1, 2, 4, 8, 16, 18, 20, 32, 35, 44, 60, 62, 64, 65, 68, 72, 92, 95, 98, 128, 154, 160, 168, 256, 264, 288, 291, 303, 324, 364, 400, 476, 480, 512, 618, 623, 624, 642, 706, 763, 791, 812, 816, 826, 938, 994, 1024, 1036, 1064, 1068, 1106, 1144, 1148, 1152, 1162
Offset: 1

Views

Author

Gus Wiseman, Jan 16 2020

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
     1: {}
     2: {1}
     4: {1,1}
     8: {1,1,1}
    16: {1,1,1,1}
    18: {1,2,2}
    20: {1,1,3}
    32: {1,1,1,1,1}
    35: {3,4}
    44: {1,1,5}
    60: {1,1,2,3}
    62: {1,11}
    64: {1,1,1,1,1,1}
    65: {3,6}
    68: {1,1,7}
    72: {1,1,1,2,2}
    92: {1,1,9}
    95: {3,8}
    98: {1,4,4}
   128: {1,1,1,1,1,1,1}
For example, 60 has prime factors {2,2,3,5} and prime indices {1,1,2,3}, and 12 is divisible by 6, so 60 is in the sequence.
		

Crossrefs

These are the Heinz numbers of the partitions counted by A331381.
Numbers divisible by the sum of their prime factors are A036844.
Partitions whose product is divisible by their sum are A057568.
Numbers divisible by the sum of their prime indices are A324851.
Product of prime indices is divisible by sum of prime indices: A326149.
Partitions whose Heinz number is divisible by their sum are A330950.
Sum of prime factors is divisible by sum of prime indices: A331380
Partitions whose product is equal to the sum of primes are A331383.
Product of prime indices equals sum of prime factors: A331384.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Divisible[Plus@@Prime/@primeMS[#],Times@@primeMS[#]]&]

A323440 Numbers divisible by exactly one of their distinct prime indices.

Original entry on oeis.org

2, 4, 8, 10, 14, 15, 16, 20, 22, 26, 32, 34, 38, 40, 44, 45, 46, 50, 52, 55, 58, 62, 64, 68, 70, 74, 75, 76, 80, 82, 86, 88, 92, 94, 98, 100, 104, 105, 106, 116, 118, 119, 122, 124, 128, 130, 134, 135, 136, 142, 146, 148, 154, 158, 160, 164, 166, 170, 172, 176
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

Numbers n such that A324852(n) = 1.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The sequence of terms together with their prime indices begins:
   2: {1}
   4: {1,1}
   8: {1,1,1}
  10: {1,3}
  14: {1,4}
  15: {2,3}
  16: {1,1,1,1}
  20: {1,1,3}
  22: {1,5}
  26: {1,6}
  32: {1,1,1,1,1}
  34: {1,7}
  38: {1,8}
  40: {1,1,1,3}
  44: {1,1,5}
  45: {2,2,3}
  46: {1,9}
  50: {1,3,3}
  52: {1,1,6}
  55: {3,5}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Count[If[#==1,{},FactorInteger[#]],{p_,_}/;Divisible[#,PrimePi[p]]]==1&]
  • PARI
    isok(n) = my(f=factor(n)[,1]); sum(k=1, #f, (n % primepi(f[k])) == 0) == 1; \\ Michel Marcus, Mar 22 2019

A353395 Numbers k such that the prime shadow of k equals the product of prime shadows of the prime indices of k.

Original entry on oeis.org

1, 3, 5, 11, 15, 17, 26, 31, 33, 41, 51, 55, 58, 59, 67, 78, 83, 85, 86, 93, 94, 109, 123, 126, 127, 130, 146, 148, 155, 157, 158, 165, 174, 177, 179, 187, 191, 196, 201, 202, 205, 211, 241, 244, 249, 255, 258, 274, 277, 278, 282, 283, 284, 286, 290, 295, 298
Offset: 1

Views

Author

Gus Wiseman, May 17 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
We define the prime shadow A181819(n) to be the product of primes indexed by the exponents in the prime factorization of n. For example, 90 = prime(1)*prime(2)^2*prime(3) has prime shadow prime(1)*prime(2)*prime(1) = 12.

Examples

			The terms together with their prime indices begin:
      1: {}         78: {1,2,6}      158: {1,22}
      3: {2}        83: {23}         165: {2,3,5}
      5: {3}        85: {3,7}        174: {1,2,10}
     11: {5}        86: {1,14}       177: {2,17}
     15: {2,3}      93: {2,11}       179: {41}
     17: {7}        94: {1,15}       187: {5,7}
     26: {1,6}     109: {29}         191: {43}
     31: {11}      123: {2,13}       196: {1,1,4,4}
     33: {2,5}     126: {1,2,2,4}    201: {2,19}
     41: {13}      127: {31}         202: {1,26}
     51: {2,7}     130: {1,3,6}      205: {3,13}
     55: {3,5}     146: {1,21}       211: {47}
     58: {1,10}    148: {1,1,12}     241: {53}
     59: {17}      155: {3,11}       244: {1,1,18}
     67: {19}      157: {37}         249: {2,23}
For example, 126 is in the sequence because its prime indices {1,2,2,4} have shadows {1,2,2,3}, with product 12, which is also the prime shadow of 126.
		

Crossrefs

The prime terms are A006450.
The LHS (prime shadow) is A181819, with an inverse A181821.
The RHS (product of shadows) is A353394, first appearances A353397.
This is a ranking of the partitions counted by A353396.
Another related comparison is A353399, counted by A353398.
A001222 counts prime factors with multiplicity, distinct A001221.
A003963 gives product of prime indices.
A056239 adds up prime indices, row sums of A112798 and A296150.
A124010 gives prime signature, sorted A118914, product A005361.
A130091 lists numbers with distinct prime exponents, counted by A098859.
A324850 lists numbers divisible by the product of their prime indices.
Numbers divisible by their prime shadow:
- counted by A325702
- listed by A325755
- co-recursive version A325756
- nonprime recursive version A353389
- recursive version A353393, counted by A353426

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    red[n_]:=If[n==1,1,Times@@Prime/@Last/@FactorInteger[n]];
    Select[Range[100],Times@@red/@primeMS[#]==red[#]&]

Formula

A181819(a(n)) = A353394(a(n)) = Product_i A181819(A112798(a(n),i)).

A355736 Least k such that there are exactly n ways to choose a divisor of each prime index of k (taken in weakly increasing order) such that the result is also weakly increasing.

Original entry on oeis.org

1, 3, 7, 13, 21, 37, 39, 89, 133, 117, 111, 273, 351, 259, 267, 333, 453, 793, 669, 623, 999, 777, 843, 1491, 1157, 1561, 2863, 1443, 1963, 2331, 1977, 1869, 2899, 2529, 3207, 4107, 3171, 5073, 4329, 3653, 4667, 3471, 7399, 4613, 7587, 5931, 7269, 5889, 7483
Offset: 1

Views

Author

Gus Wiseman, Jul 21 2022

Keywords

Comments

This is the position of first appearance of n in A355735.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The terms together with their prime indices begin:
     1: {}
     3: {2}
     7: {4}
    13: {6}
    21: {2,4}
    37: {12}
    39: {2,6}
    89: {24}
   133: {4,8}
   117: {2,2,6}
   111: {2,12}
   273: {2,4,6}
   351: {2,2,2,6}
For example, the choices for a(12) = 273 are:
  {1,1,1}  {1,2,2}  {2,2,2}
  {1,1,2}  {1,2,3}  {2,2,3}
  {1,1,3}  {1,2,6}  {2,2,6}
  {1,1,6}  {1,4,6}  {2,4,6}
		

Crossrefs

Allowing any choice of divisors gives A355732, firsts of A355731.
Choosing a multiset instead of sequence gives A355734, firsts of A355733.
Positions of first appearances in A355735.
The case of prime factors instead of divisors is counted by A355745.
The decreasing version is counted by A355749.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A120383 lists numbers divisible by all of their prime indices.
A324850 lists numbers divisible by the product of their prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    mnrm[s_]:=If[Min@@s==1,mnrm[DeleteCases[s-1,0]]+1,0];
    az=Table[Length[Select[Tuples[Divisors/@primeMS[n]],LessEqual@@#&]],{n,1000}];
    Table[Position[az,k][[1,1]],{k,mnrm[az]}]

A355749 Number of ways to choose a weakly decreasing sequence of divisors, one of each prime index of n (with multiplicity, taken in weakly increasing order).

Original entry on oeis.org

1, 1, 2, 1, 2, 1, 3, 1, 3, 1, 2, 1, 4, 1, 2, 1, 2, 1, 4, 1, 3, 1, 3, 1, 3, 1, 4, 1, 4, 1, 2, 1, 2, 1, 3, 1, 6, 1, 3, 1, 2, 1, 4, 1, 3, 1, 4, 1, 6, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, 6, 1, 4, 1, 4, 1, 2, 1, 2, 1, 6, 1, 4, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 1, 2, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Jul 18 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The a(2) = 1 through a(19) = 4 choices:
  1  1  11  1  11  1  111  11  11  1  111  1  11  11  1111  1  111  1
     2      3      2       21      5       2      21        7       2
                   4       22              3                        4
                                           6                        8
		

Crossrefs

Allowing any choice of divisors gives A355731, firsts A355732.
Choosing a multiset instead of sequence gives A355733, firsts A355734.
The reverse version is A355735, firsts A355736, only primes A355745.
A000005 counts divisors.
A001414 adds up distinct prime divisors, counted by A001221.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798, counted by A001222.
A061395 selects the maximum prime index.

Programs

  • Mathematica
    Table[Length[Select[Tuples[Divisors/@primeMS[n]], GreaterEqual@@#&]],{n,100}]

A324771 Numbers divisible by at least one of their prime indices > 1.

Original entry on oeis.org

6, 12, 15, 18, 24, 28, 30, 36, 42, 45, 48, 54, 55, 56, 60, 66, 72, 75, 78, 84, 90, 96, 102, 105, 108, 110, 112, 114, 119, 120, 126, 132, 135, 138, 140, 144, 150, 152, 156, 162, 165, 168, 174, 180, 186, 192, 195, 196, 198, 204, 207, 210, 216, 220, 222, 224, 225
Offset: 1

Views

Author

Gus Wiseman, Mar 18 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n.

Examples

			The sequence of terms together with their prime indices begins:
   6: {1,2}
  12: {1,1,2}
  15: {2,3}
  18: {1,2,2}
  24: {1,1,1,2}
  28: {1,1,4}
  30: {1,2,3}
  36: {1,1,2,2}
  42: {1,2,4}
  45: {2,2,3}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  55: {3,5}
  56: {1,1,1,4}
  60: {1,1,2,3}
  66: {1,2,5}
  72: {1,1,1,2,2}
  75: {2,3,3}
  78: {1,2,6}
  84: {1,1,2,4}
		

Crossrefs

Programs

  • Mathematica
    Select[Range[100],Or@@Cases[If[#==1,{},FactorInteger[#]],{p_?(#>2&),_}:>Divisible[#,PrimePi[p]]]&]

A324968 Matula-Goebel numbers of rooted identity trees whose non-leaf terminal subtrees are all different.

Original entry on oeis.org

1, 2, 3, 5, 6, 10, 11, 13, 22, 26, 29, 31, 41, 58, 62, 79, 82, 101, 109, 127, 158, 179, 202, 218, 254, 271, 293, 358, 401, 421, 542, 547, 586, 599, 709, 802, 842, 929, 1063, 1094, 1198, 1231, 1361, 1418, 1609, 1741, 1858, 1913, 2126, 2411, 2462, 2722, 2749
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root. This sequence ranks rooted identity trees satisfying the additional condition that all non-leaf terminal subtrees are different.

Examples

			The sequence of trees together with the Matula-Goebel numbers begins:
    1: o
    2: (o)
    3: ((o))
    5: (((o)))
    6: (o(o))
   10: (o((o)))
   11: ((((o))))
   13: ((o(o)))
   22: (o(((o))))
   26: (o(o(o)))
   29: ((o((o))))
   31: (((((o)))))
   41: (((o(o))))
   58: (o(o((o))))
   62: (o((((o)))))
   79: ((o(((o)))))
   82: (o((o(o))))
  101: ((o(o(o))))
  109: (((o((o)))))
  127: ((((((o))))))
		

Crossrefs

Programs

  • Mathematica
    mgtree[n_Integer]:=If[n==1,{},mgtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And[And@@Cases[mgtree[#],q:{}:>UnsameQ@@q,{0,Infinity}],UnsameQ@@Cases[mgtree[#],{},{0,Infinity}]]&]

Formula

Intersection of A324935 and A276625.

A324970 Matula-Goebel numbers of rooted identity trees where not all terminal subtrees are different.

Original entry on oeis.org

15, 30, 33, 39, 47, 55, 65, 66, 78, 87, 93, 94, 110, 113, 123, 130, 137, 141, 143, 145, 155, 165, 167, 174, 186, 195, 205, 211, 226, 235, 237, 246, 257, 274, 282, 286, 290, 303, 310, 313, 317, 319, 327, 330, 334, 339, 341, 377, 381, 390, 395, 397, 403, 410
Offset: 1

Views

Author

Gus Wiseman, Mar 21 2019

Keywords

Comments

A rooted identity tree is an unlabeled rooted tree with no repeated branches directly under the same root.

Examples

			The sequence of trees together with the Matula-Goebel numbers begins:
   15: ((o)((o)))
   30: (o(o)((o)))
   33: ((o)(((o))))
   39: ((o)(o(o)))
   47: (((o)((o))))
   55: (((o))(((o))))
   65: (((o))(o(o)))
   66: (o(o)(((o))))
   78: (o(o)(o(o)))
   87: ((o)(o((o))))
   93: ((o)((((o)))))
   94: (o((o)((o))))
  110: (o((o))(((o))))
  113: ((o(o)((o))))
  123: ((o)((o(o))))
  130: (o((o))(o(o)))
  137: (((o)(((o)))))
  141: ((o)((o)((o))))
  143: ((((o)))(o(o)))
  145: (((o))(o((o))))
  155: (((o))((((o)))))
  165: ((o)((o))(((o))))
  167: (((o)(o(o))))
  174: (o(o)(o((o))))
  186: (o(o)((((o)))))
  195: ((o)((o))(o(o)))
		

Crossrefs

Programs

  • Mathematica
    mgtree[n_Integer]:=If[n==1,{},mgtree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],And[And@@Cases[mgtree[#],q:{}:>UnsameQ@@q,{0,Infinity}],!UnsameQ@@Cases[mgtree[#],{},{0,Infinity}]]&]

Formula

Complement of A324935 in A276625.
Previous Showing 51-60 of 74 results. Next