cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 31 results. Next

A253566 Permutation of natural numbers: a(n) = A243071(A122111(n)).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 8, 7, 5, 12, 16, 14, 32, 24, 10, 15, 64, 13, 128, 28, 20, 48, 256, 30, 9, 96, 11, 56, 512, 26, 1024, 31, 40, 192, 18, 29, 2048, 384, 80, 60, 4096, 52, 8192, 112, 22, 768, 16384, 62, 17, 25, 160, 224, 32768, 27, 36, 120, 320, 1536, 65536, 58, 131072, 3072, 44, 63, 72, 104, 262144, 448, 640, 50, 524288, 61, 1048576, 6144, 21
Offset: 1

Views

Author

Antti Karttunen, Jan 03 2015

Keywords

Comments

Note the indexing: domain starts from one, while the range includes also zero. See also comments in A253564.
The a(n)-th composition in standard order (graded reverse-lexicographic, A066099) is one plus the first differences of the weakly increasing sequence of prime indices of n with 1 prepended. See formula for a simplification. The triangular form is A358169. The inverse is A253565. Not prepending 1 gives A358171. For Heinz numbers instead of standard compositions we have A325351 (without prepending A325352). - Gus Wiseman, Dec 23 2022

Examples

			From _Gus Wiseman_, Dec 23 2022: (Start)
This represents the following bijection between partitions and compositions. The reversed prime indices of n together with the a(n)-th composition in standard order are:
   1:        () -> ()
   2:       (1) -> (1)
   3:       (2) -> (2)
   4:     (1,1) -> (1,1)
   5:       (3) -> (3)
   6:     (2,1) -> (1,2)
   7:       (4) -> (4)
   8:   (1,1,1) -> (1,1,1)
   9:     (2,2) -> (2,1)
  10:     (3,1) -> (1,3)
  11:       (5) -> (5)
  12:   (2,1,1) -> (1,1,2)
  13:       (6) -> (6)
  14:     (4,1) -> (1,4)
  15:     (3,2) -> (2,2)
  16: (1,1,1,1) -> (1,1,1,1)
(End)
		

Crossrefs

Inverse: A253565.
Applying A000120 gives A001222.
A reverse version is A156552, inverse essentially A005940.
The inverse is A253565, triangular form A242628.
The triangular form is A358169.
A048793 gives partial sums of reversed standard comps, Heinz number A019565.
A066099 lists standard compositions, lengths A000120, sums A070939.
A112798 list prime indices, sum A056239.
A358134 gives partial sums of standard compositions, Heinz number A358170.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    stcinv[q_]:=Total[2^(Accumulate[Reverse[q]])]/2;
    stcinv/@Table[Differences[Prepend[primeMS[n],1]]+1,{n,100}] (* Gus Wiseman, Dec 23 2022 *)
  • Scheme
    (define (A253566 n) (A243071 (A122111 n)))

Formula

a(n) = A243071(A122111(n)).
As a composition of other permutations:
a(n) = A054429(A253564(n)).
a(n) = A336120(n) + A336125(n). - Antti Karttunen, Jul 18 2020
If 2n = Product_{i=1..k} prime(x_i) then a(n) = Sum_{i=1..k-1} 2^(x_k-x_{k-i}+i-1). - Gus Wiseman, Dec 23 2022

A325390 Heinz number of the negated differences plus one of the integer partition with Heinz number n (with the last part taken to be 0).

Original entry on oeis.org

1, 3, 5, 6, 7, 9, 11, 12, 10, 15, 13, 18, 17, 21, 15, 24, 19, 18, 23, 30, 25, 33, 29, 36, 14, 39, 20, 42, 31, 27, 37, 48, 35, 51, 21, 36, 41, 57, 55, 60, 43, 45, 47, 66, 30, 69, 53, 72, 22, 30, 65, 78, 59, 36, 35, 84, 85, 87, 61, 54, 67, 93, 50, 96, 49, 63, 71
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of a positive integer sequence (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) (with the last part taken to be 0) are (-3,-2,-1).

Examples

			The Heinz number of (6,3,1) is 130, and its negated differences plus one are (4,3,2), which has Heinz number 105, so a(130) = 105.
		

Crossrefs

Number of appearances of n is A325392(n).
Positions of squarefree numbers are A325367.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Table[Times@@Prime/@(1-Differences[Append[primeptn[n],0]]),{n,100}]

A325361 Heinz numbers of integer partitions whose differences are weakly decreasing.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 81, 82, 83, 85, 86, 87, 89
Offset: 1

Views

Author

Gus Wiseman, May 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, for example the differences of (x, y, z) are (y - x, z - y). We adhere to this standard for integer partitions also even though they are always weakly decreasing. For example, the differences of (6,3,1) are (-3,-2).
The enumeration of these partitions by sum is given by A320466.

Examples

			Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins:
   12: {1,1,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   36: {1,1,2,2}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   52: {1,1,6}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
   68: {1,1,7}
   72: {1,1,1,2,2}
   76: {1,1,8}
   78: {1,2,6}
   80: {1,1,1,1,3}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],GreaterEqual@@Differences[primeptn[#]]&]

A355525 Minimal difference between adjacent prime indices of n, or k if n is the k-th prime.

Original entry on oeis.org

1, 2, 0, 3, 1, 4, 0, 0, 2, 5, 0, 6, 3, 1, 0, 7, 0, 8, 0, 2, 4, 9, 0, 0, 5, 0, 0, 10, 1, 11, 0, 3, 6, 1, 0, 12, 7, 4, 0, 13, 1, 14, 0, 0, 8, 15, 0, 0, 0, 5, 0, 16, 0, 2, 0, 6, 9, 17, 0, 18, 10, 0, 0, 3, 1, 19, 0, 7, 1, 20, 0, 21, 11, 0, 0, 1, 1, 22, 0, 0, 12
Offset: 2

Views

Author

Gus Wiseman, Jul 10 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The prime indices of 9842 are {1,4,8,12}, with differences (3,4,4), so a(9842) = 3.
		

Crossrefs

Crossrefs found in the link are not repeated here.
Positions of first appearances are 4 followed by A000040.
Positions of 0's are A013929, see also A130091.
Triangle A238709 counts m such that A056239(m) = n and a(m) = k.
For maximal instead of minimal difference we have A286470.
Positions of terms > 1 are A325160, also A325161.
See also A355524, A355528.
Positions of 1's are A355527.
A001522 counts partitions with a fixed point (unproved), ranked by A352827.
A238352 counts partitions by fixed points, rank statistic A352822.
A287352, A355533, A355534, A355536 list the differences of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[PrimeQ[n],PrimePi[n],Min@@Differences[primeMS[n]]],{n,2,100}]

A355533 Irregular triangle read by rows where row n lists the differences between adjacent prime indices of n; if n is prime(k), then row n is just (k).

Original entry on oeis.org

1, 2, 0, 3, 1, 4, 0, 0, 0, 2, 5, 0, 1, 6, 3, 1, 0, 0, 0, 7, 1, 0, 8, 0, 2, 2, 4, 9, 0, 0, 1, 0, 5, 0, 0, 0, 3, 10, 1, 1, 11, 0, 0, 0, 0, 3, 6, 1, 0, 1, 0, 12, 7, 4, 0, 0, 2, 13, 1, 2, 14, 0, 4, 0, 1, 8, 15, 0, 0, 0, 1, 0, 2, 0
Offset: 2

Views

Author

Gus Wiseman, Jul 12 2022

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The version where zero is prepended to the prime indices before taking differences is A287352.
One could argue that row n = 1 is empty, but adding it changes only the offset, with no effect on the data.

Examples

			Triangle begins (showing n, prime indices, differences*):
   2:    (1)       1
   3:    (2)       2
   4:   (1,1)      0
   5:    (3)       3
   6:   (1,2)      1
   7:    (4)       4
   8:  (1,1,1)    0 0
   9:   (2,2)      0
  10:   (1,3)      2
  11:    (5)       5
  12:  (1,1,2)    0 1
  13:    (6)       6
  14:   (1,4)      3
  15:   (2,3)      1
  16: (1,1,1,1)  0 0 0
For example, the prime indices of 24 are (1,1,1,2), with differences (0,0,1).
		

Crossrefs

Crossrefs found in the link are not repeated here.
Row sums are A243056.
The version for prime indices prepended by 0 is A287352.
Constant rows have indices A325328.
Strict rows have indices A325368.
Number of distinct terms in each row are 1 if prime, otherwise A355523.
Row minima are A355525, augmented A355531.
Row maxima are A355526, augmented A355535.
The augmented version is A355534, Heinz number A325351.
The version with prime-indexed rows empty is A355536, Heinz number A325352.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[If[PrimeQ[n],{PrimePi[n]},Differences[primeMS[n]]],{n,2,30}]

Formula

Row lengths are 1 or A001222(n) - 1 depending on whether n is prime.

A257989 The crank of the partition having Heinz number n.

Original entry on oeis.org

-1, 2, -2, 3, 0, 4, -3, 2, 0, 5, -2, 6, 0, 3, -4, 7, 1, 8, -1, 4, 0, 9, -3, 3, 0, 2, -1, 10, 1, 11, -5, 5, 0, 4, -2, 12, 0, 6, -3, 13, 1, 14, -1, 3, 0, 15, -4, 4, 1, 7, -1, 16, 2, 5, -2, 8, 0, 17, -1, 18, 0, 4, -6, 6, 1, 19, -1, 9, 1, 20, -3, 21, 0, 3, -1, 5, 1, 22, -4, 2, 0, 23, -1, 7, 0, 10, -2, 24, 2, 6, -1
Offset: 2

Views

Author

Emeric Deutsch, May 18 2015

Keywords

Comments

The crank of a partition p is defined to be (i) the largest part of p if there is no 1 in p and (ii) (the number of parts larger than the number of 1's) minus (the number of 1's).
We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] we get 2*2*3*7*29 = 2436.
In the Maple program the subprogram B yields the partition with Heinz number n, the subprogram b yields the number of 1's in the partition with Heinz number n and the subprogram c yields the number of parts that are larger than the number of 1's in the partition with the Heinz number n.

Examples

			a(12) = - 2 because the partition with Heinz number 12 = 2*2*3 is [1,1,2], the number of parts larger than the number of 1's is 0 and the number of 1's is 2; 0 - 2 = -2.
a(945) = 4 because the partition with Heinz number 945 = 3^3 * 5 * 7 is [2,2,2,3,4] which has no part 1; the largest part is 4.
From _Gus Wiseman_, Apr 05 2021: (Start)
The partitions (center) with each Heinz number (left), and the corresponding terms (right):
   2:    (1)    -> -1
   3:    (2)    ->  2
   4:   (1,1)   -> -2
   5:    (3)    ->  3
   6:   (2,1)   ->  0
   7:    (4)    ->  4
   8:  (1,1,1)  -> -3
   9:   (2,2)   ->  2
  10:   (3,1)   ->  0
  11:    (5)    ->  5
  12:  (2,1,1)  -> -2
  13:    (6)    ->  6
  14:   (4,1)   ->  0
  15:   (3,2)   ->  3
  16: (1,1,1,1) -> -4
(End)
		

Crossrefs

Indices of zeros are A342192.
A001522 counts partitions of crank 0.
A003242 counts anti-run compositions.
A064391 counts partitions by crank.
A064428 counts partitions of nonnegative crank.

Programs

  • Maple
    with(numtheory): a := proc (n) local B, b, c: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do; [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: b := proc (n) if `mod`(n, 2) = 1 then 0 else 1+b((1/2)*n) end if end proc: c := proc (n) local b, B, ct, i: b := proc (n) if `mod`(n, 2) = 1 then 0 else 1+b((1/2)*n) end if end proc: B := proc (n) local nn, j, m: nn := op(2, ifactors(n)): for j to nops(nn) do m[j] := op(j, nn) end do: [seq(seq(pi(op(1, m[i])), q = 1 .. op(2, m[i])), i = 1 .. nops(nn))] end proc: ct := 0: for i to bigomega(n) do if b(n) < B(n)[i] then ct := ct+1 else  end if end do: ct end proc: if b(n) = 0 then max(B(n)) else c(n)-b(n) end if end proc: seq(a(n), n = 2 .. 150);
  • Mathematica
    B[n_] := Module[{nn, j, m}, nn =  FactorInteger[n]; For[j = 1, j <= Length[nn], j++, m[j] = nn[[j]]]; Flatten[Table[Table[PrimePi[m[i][[1]]], {q, 1, m[i][[2]]}], {i, 1, Length[nn]}]]];
    b[n_] := b[n] = If[OddQ[n], 0, 1 + b[n/2]];
    c[n_] := Module[{ct, i}, ct = 0; For[i = 1, i <= PrimeOmega[n], i++, If[ b[n] < B[n][[i]], ct++]]; ct];
    a[n_] := If[b[n] == 0, Max[B[n]], c[n] - b[n]];
    Table[a[n], {n, 2, 100}] (* Jean-François Alcover, Apr 25 2017, after Emeric Deutsch *)
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ck[y_]:=With[{w=Count[y,1]},If[w==0,Max@@y,Count[y,_?(#>w&)]-w]];
    Table[ck[primeMS[n]],{n,2,30}] (* Gus Wiseman, Apr 05 2021 *)

A325355 One plus the number of steps applying A325351 (Heinz number of augmented differences of reversed prime indices) to reach a fixed point.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 4, 1, 1, 1, 2, 1, 2, 1, 1, 3, 1, 1, 5, 1, 4, 2, 1, 1, 6, 1, 1, 4, 1, 1, 3, 1, 1, 1, 2, 2, 7, 1, 1, 2, 3, 1, 8, 1, 1, 3, 1, 1, 4, 1, 5, 5, 1, 1, 9, 4, 1, 2, 1, 1, 3, 1, 5, 6, 1, 1, 2, 1, 1, 4, 4, 1, 10, 1, 1, 3, 5, 1, 11, 1, 6, 1, 1, 2, 5, 2, 1, 7, 1, 1, 3
Offset: 1

Views

Author

Gus Wiseman, Apr 23 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The augmented differences aug(y) of an integer partition y of length k are given by aug(y)i = y_i - y{i + 1} + 1 if i < k and aug(y)_k = y_k. For example, aug(6,5,5,3,3,3) = (2,1,3,1,1,3).
The fixed points of A325351 are the Heinz numbers of hooks A093641.

Examples

			Repeatedly applying A325351 starting with 78 gives 78 -> 66 -> 42 -> 30 -> 18 -> 12, and 12 is a fixed point, so a(78) = 6.
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    aug[y_]:=Table[If[i
    				
  • PARI
    augdiffs(n) = { my(diffs=List([]), f=factor(n), prevpi, pi=0, i=#f~); while(i, prevpi=pi; pi = primepi(f[i, 1]); if(prevpi, listput(diffs, 1+(prevpi-pi))); if(f[i, 2]>1, f[i, 2]--, i--)); if(pi, listput(diffs,pi)); Vec(diffs); };
    A325351(n) = factorback(apply(prime,augdiffs(n)));
    A325355(n) = { my(u=A325351(n)); if(u==n,1,1+A325355(u)); }; \\ Antti Karttunen, Nov 16 2019

Extensions

More terms from Antti Karttunen, Nov 16 2019

A325457 Heinz numbers of integer partitions with strictly decreasing differences.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 70, 71, 73, 74, 75, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 98
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The enumeration of these partitions by sum is given by A320470.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   6: {1,2}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Greater@@Differences[primeptn[#]]&]

A325456 Heinz numbers of integer partitions with strictly increasing differences.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 19, 20, 21, 22, 23, 25, 26, 28, 29, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 51, 52, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 68, 69, 71, 73, 74, 76, 77, 78, 79, 82, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Gus Wiseman, May 03 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2).
The enumeration of these partitions by sum is given by A240027.

Examples

			The sequence of terms together with their prime indices begins:
   1: {}
   2: {1}
   3: {2}
   4: {1,1}
   5: {3}
   6: {1,2}
   7: {4}
   9: {2,2}
  10: {1,3}
  11: {5}
  12: {1,1,2}
  13: {6}
  14: {1,4}
  15: {2,3}
  17: {7}
  19: {8}
  20: {1,1,3}
  21: {2,4}
  22: {1,5}
  23: {9}
		

Crossrefs

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],Less@@Differences[primeptn[#]]&]

A342522 Heinz numbers of integer partitions with constant (equal) first quotients.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97
Offset: 1

Views

Author

Gus Wiseman, Mar 23 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The first quotients of a sequence are defined as if the sequence were an increasing divisor chain, so for example the first quotients of (6,3,1) are (1/2,1/3).

Examples

			The prime indices of 2093 are {4,6,9}, with first quotients (3/2,3/2), so 2093 is in the sequence.
Most small numbers are in the sequence, but the sequence of non-terms together with their prime indices begins:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   30: {1,2,3}
   36: {1,1,2,2}
   40: {1,1,1,3}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
   50: {1,3,3}
   52: {1,1,6}
   54: {1,2,2,2}
   56: {1,1,1,4}
   60: {1,1,2,3}
   63: {2,2,4}
   66: {1,2,5}
		

Crossrefs

For multiplicities (prime signature) instead of quotients we have A072774.
The version counting strict divisor chains is A169594.
For differences instead of quotients we have A325328 (count: A049988).
These partitions are counted by A342496 (strict: A342515, ordered: A342495).
The distinct instead of equal version is A342521.
A000005 count constant partitions.
A000041 counts partitions (strict: A000009).
A001055 counts factorizations (strict: A045778, ordered: A074206).
A003238 counts chains of divisors summing to n - 1 (strict: A122651).
A167865 counts strict chains of divisors > 1 summing to n.
A318991/A318992 rank reversed partitions with/without integer quotients.
A342086 counts strict chains of divisors with strictly increasing quotients.

Programs

  • Mathematica
    primeptn[n_]:=If[n==1,{},Reverse[Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]];
    Select[Range[100],SameQ@@Divide@@@Reverse/@Partition[primeptn[#],2,1]&]
Previous Showing 11-20 of 31 results. Next