cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 20 results.

A325992 Heinz numbers of integer partitions such that not every ordered pair of distinct parts has a different difference.

Original entry on oeis.org

30, 60, 90, 105, 110, 120, 150, 180, 210, 220, 238, 240, 270, 273, 300, 315, 330, 360, 385, 390, 420, 440, 450, 462, 476, 480, 506, 510, 525, 540, 546, 550, 570, 600, 627, 630, 660, 690, 714, 720, 735, 750, 770, 780, 806, 810, 819, 840, 858, 870, 880, 900, 910
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   30: {1,2,3}
   60: {1,1,2,3}
   90: {1,2,2,3}
  105: {2,3,4}
  110: {1,3,5}
  120: {1,1,1,2,3}
  150: {1,2,3,3}
  180: {1,1,2,2,3}
  210: {1,2,3,4}
  220: {1,1,3,5}
  238: {1,4,7}
  240: {1,1,1,1,2,3}
  270: {1,2,2,2,3}
  273: {2,4,6}
  300: {1,1,2,3,3}
  315: {2,2,3,4}
  330: {1,2,3,5}
  360: {1,1,1,2,2,3}
  385: {3,4,5}
  390: {1,2,3,6}
		

Crossrefs

The subset case is A143823.
The maximal case is A325879.
The integer partition case is A325858.
The strict integer partition case is A325876.
Heinz numbers of the counterexamples are given by A325992.

Programs

  • Mathematica
    Select[Range[1000],!UnsameQ@@Subtract@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]

A325855 Number of strict integer partitions of n such that every pair of distinct parts has a different product.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 5, 6, 8, 10, 12, 14, 18, 22, 25, 31, 37, 44, 53, 59, 69, 83, 100, 111, 129, 152, 173, 198, 232, 260, 302, 342, 386, 448, 498, 565, 646, 728, 819, 918, 1039, 1164, 1310, 1462, 1631, 1830, 2053, 2282, 2532, 2825, 3136, 3482, 3869, 4300, 4744
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Examples

			The a(1) = 1 through a(10) = 10 partitions (A = 10):
  (1)  (2)  (3)   (4)   (5)   (6)    (7)    (8)    (9)    (A)
            (21)  (31)  (32)  (42)   (43)   (53)   (54)   (64)
                        (41)  (51)   (52)   (62)   (63)   (73)
                              (321)  (61)   (71)   (72)   (82)
                                     (421)  (431)  (81)   (91)
                                            (521)  (432)  (532)
                                                   (531)  (541)
                                                   (621)  (631)
                                                          (721)
                                                          (4321)
		

Crossrefs

The subset case is A196724.
The maximal case is A325859.
The integer partition case is A325856.
The strict integer partition case is A325855.
Heinz numbers of the counterexamples are given by A325993.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Times@@@Subsets[Union[#],{2}]&]],{n,0,30}]

A325857 Number of integer partitions of n such that every orderless pair of distinct parts has a different sum.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 55, 74, 97, 125, 165, 209, 269, 335, 428, 527, 664, 804, 1005, 1210, 1496, 1780, 2186, 2586, 3148, 3698, 4473, 5226, 6279, 7290, 8706, 10067, 11950, 13744, 16242, 18605, 21864, 24942, 29184, 33188, 38651, 43782, 50791, 57402, 66300, 74683, 86026, 96658
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Examples

			The A000041(14) - a(14) = 10 partitions of 14 not satisfying the condition are:
  (6,5,2,1)
  (6,4,3,1)
  (5,4,3,2)
  (5,4,2,2,1)
  (4,4,3,2,1)
  (5,4,2,1,1,1)
  (4,3,3,2,1,1)
  (4,3,2,2,2,1)
  (4,3,2,2,1,1,1)
  (4,3,2,1,1,1,1,1)
		

Crossrefs

The subset case is A196723.
The maximal case is A325878.
The integer partition case is A325857.
The strict integer partition case is A325877.
Heinz numbers of the counterexamples are given by A325991.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Plus@@@Subsets[Union[#],{2}]&]],{n,0,30}]

Extensions

Terms a(31) onward from Max Alekseyev, Sep 23 2023

A325868 Number of subsets of {1..n} containing n such that every ordered pair of distinct elements has a different quotient.

Original entry on oeis.org

1, 2, 4, 6, 14, 24, 52, 84, 120, 240, 548, 688, 1784, 2600, 4236, 5796, 16200, 17568, 49968, 55648, 101360, 176792, 433736, 430032, 728784, 1360928, 2304840, 2990856, 8682912, 7877376, 25243200, 27946656, 46758912, 81457248, 121546416, 114388320, 442583952
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Examples

			The a(1) = 1 through a(5) = 14 subsets:
  {1}  {2}    {3}      {4}      {5}
       {1,2}  {1,3}    {1,4}    {1,5}
              {2,3}    {2,4}    {2,5}
              {1,2,3}  {3,4}    {3,5}
                       {1,3,4}  {4,5}
                       {2,3,4}  {1,2,5}
                                {1,3,5}
                                {1,4,5}
                                {2,3,5}
                                {2,4,5}
                                {3,4,5}
                                {1,2,3,5}
                                {1,3,4,5}
                                {2,3,4,5}
		

Crossrefs

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&UnsameQ@@Divide@@@Subsets[#,{2}]&]],{n,10}]

Extensions

a(21)-a(37) from Fausto A. C. Cariboni, Oct 16 2020

A325880 Number of maximal subsets of {1..n} containing n such that every ordered pair of distinct elements has a different difference.

Original entry on oeis.org

1, 1, 2, 2, 4, 8, 8, 10, 18, 34, 50, 70, 78, 89, 120, 181, 277, 401, 561, 728, 867, 1031, 1219, 1537, 2013, 2684, 3581, 4973, 6435, 8124, 9974, 12054, 14057, 16890, 19783, 24102, 29539, 37247, 46301, 59825, 74556, 94064, 115057, 141068, 167521, 200790, 232798, 273734
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

Also the number of maximal subsets of {1..n} containing n such that every orderless pair of (not necessarily distinct) elements has a different sum.

Examples

			The a(2) = 1 through a(9) = 18 subsets:
  {1,2}  {1,3}  {1,2,4}  {1,2,5}  {1,2,6}  {2,3,7}    {3,5,8}    {4,6,9}
         {2,3}  {1,3,4}  {1,4,5}  {1,3,6}  {2,4,7}    {4,5,8}    {5,6,9}
                         {2,3,5}  {1,4,6}  {2,6,7}    {1,2,4,8}  {1,2,4,9}
                         {2,4,5}  {1,5,6}  {3,4,7}    {1,2,6,8}  {1,2,6,9}
                                  {2,3,6}  {4,5,7}    {1,3,4,8}  {1,2,7,9}
                                  {2,5,6}  {4,6,7}    {1,3,7,8}  {1,3,4,9}
                                  {3,4,6}  {1,2,5,7}  {1,5,6,8}  {1,3,8,9}
                                  {3,5,6}  {1,3,6,7}  {1,5,7,8}  {1,4,8,9}
                                                      {2,3,6,8}  {1,6,7,9}
                                                      {2,4,7,8}  {1,6,8,9}
                                                                 {2,3,5,9}
                                                                 {2,3,7,9}
                                                                 {2,4,5,9}
                                                                 {2,4,8,9}
                                                                 {2,6,7,9}
                                                                 {2,6,8,9}
                                                                 {3,4,7,9}
                                                                 {3,5,8,9}
		

Crossrefs

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
    Table[Length[fasmax[Select[Subsets[Range[n]],MemberQ[#,n]&&UnsameQ@@Subtract@@@Subsets[Union[#],{2}]&]]],{n,0,10}]
  • PARI
    a(n)={
      my(ismaxl(b,w)=for(k=1, n, if(!bittest(b,k) && !bitand(w,bitor(b,1<= n, ismaxl(b,w),
             my(s=self()(k+1, b,w));
             b+=1<Andrew Howroyd, Mar 23 2025

Extensions

a(25) onwards from Andrew Howroyd, Mar 23 2025

A325869 Number of maximal subsets of {1..n} containing n such that every pair of distinct elements has a different quotient.

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 6, 6, 6, 20, 32, 29, 57, 83, 113, 183, 373, 233, 549, 360
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Examples

			The a(1) = 1 through a(7) = 6 subsets:
  {1}  {1,2}  {1,2,3}  {1,3,4}  {1,2,3,5}  {1,2,5,6}    {1,2,3,5,7}
                       {2,3,4}  {1,3,4,5}  {2,3,5,6}    {1,2,5,6,7}
                                {2,3,4,5}  {2,4,5,6}    {2,3,4,5,7}
                                           {1,3,4,5,6}  {2,3,5,6,7}
                                                        {2,4,5,6,7}
                                                        {1,3,4,5,6,7}
		

Crossrefs

Programs

  • Mathematica
    fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&)/@y];
    Table[Length[fasmax[Select[Subsets[Range[n]],MemberQ[#,n]&&UnsameQ@@Divide@@@Subsets[#,{2}]&]]],{n,10}]

A325991 Heinz numbers of integer partitions such that not every orderless pair of distinct parts has a different sum.

Original entry on oeis.org

210, 420, 462, 630, 840, 858, 910, 924, 1050, 1155, 1260, 1326, 1386, 1470, 1680, 1716, 1820, 1848, 1870, 1890, 1938, 2100, 2145, 2310, 2470, 2520, 2574, 2622, 2652, 2730, 2772, 2926, 2940, 3150, 3234, 3315, 3360, 3432, 3465, 3570, 3640, 3696, 3740, 3780, 3876
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   210: {1,2,3,4}
   420: {1,1,2,3,4}
   462: {1,2,4,5}
   630: {1,2,2,3,4}
   840: {1,1,1,2,3,4}
   858: {1,2,5,6}
   910: {1,3,4,6}
   924: {1,1,2,4,5}
  1050: {1,2,3,3,4}
  1155: {2,3,4,5}
  1260: {1,1,2,2,3,4}
  1326: {1,2,6,7}
  1386: {1,2,2,4,5}
  1470: {1,2,3,4,4}
  1680: {1,1,1,1,2,3,4}
  1716: {1,1,2,5,6}
  1820: {1,1,3,4,6}
  1848: {1,1,1,2,4,5}
  1870: {1,3,5,7}
  1890: {1,2,2,2,3,4}
		

Crossrefs

The subset case is A196723.
The maximal case is A325878.
The integer partition case is A325857.
The strict integer partition case is A325877.
Heinz numbers of the counterexamples are given by A325991.

Programs

  • Mathematica
    Select[Range[1000],!UnsameQ@@Plus@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]

A325993 Heinz numbers of integer partitions such that not every orderless pair of distinct parts has a different product.

Original entry on oeis.org

390, 780, 798, 1170, 1365, 1560, 1596, 1914, 1950, 2340, 2394, 2590, 2730, 2886, 3120, 3192, 3510, 3828, 3900, 3990, 4095, 4290, 4386, 4485, 4680, 4788, 5070, 5170, 5180, 5460, 5586, 5742, 5772, 5850, 6042, 6240, 6384, 6630, 6699, 6825, 7020, 7182, 7410, 7656
Offset: 1

Views

Author

Gus Wiseman, Jun 02 2019

Keywords

Comments

The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).

Examples

			The sequence of terms together with their prime indices begins:
   390: {1,2,3,6}
   780: {1,1,2,3,6}
   798: {1,2,4,8}
  1170: {1,2,2,3,6}
  1365: {2,3,4,6}
  1560: {1,1,1,2,3,6}
  1596: {1,1,2,4,8}
  1914: {1,2,5,10}
  1950: {1,2,3,3,6}
  2340: {1,1,2,2,3,6}
  2394: {1,2,2,4,8}
  2590: {1,3,4,12}
  2730: {1,2,3,4,6}
  2886: {1,2,6,12}
  3120: {1,1,1,1,2,3,6}
  3192: {1,1,1,2,4,8}
  3510: {1,2,2,2,3,6}
  3828: {1,1,2,5,10}
  3900: {1,1,2,3,3,6}
  3990: {1,2,3,4,8}
		

Crossrefs

The subset case is A196724.
The maximal case is A325859.
The integer partition case is A325856.
The strict integer partition case is A325855.
Heinz numbers of the counterexamples are given by A325993.

Programs

  • Mathematica
    Select[Range[1000],!UnsameQ@@Times@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]

A326035 Number of uniform knapsack partitions of n.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 6, 6, 9, 10, 12, 12, 17, 16, 20, 25, 27, 29, 35, 39, 44, 57, 53, 66, 75, 84, 84, 114, 112, 131, 133, 162, 167, 209, 192, 242, 250, 289, 279, 363, 348, 417, 404, 502, 487, 608, 557, 706, 682, 835, 773, 1004, 922, 1149, 1059, 1344, 1257, 1595
Offset: 0

Views

Author

Gus Wiseman, Jun 04 2019

Keywords

Comments

An integer partition is uniform if all parts appear with the same multiplicity, and knapsack if every distinct submultiset has a different sum.

Examples

			The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (11111)  (51)      (61)       (62)
                                     (222)     (421)      (71)
                                     (111111)  (1111111)  (521)
                                                          (2222)
                                                          (3311)
                                                          (11111111)
		

Crossrefs

Programs

  • Mathematica
    sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])];
    ks[n_]:=Select[IntegerPartitions[n],Length[sums[Sort[#]]]==Times@@(Length/@Split[#]+1)-1&];
    Table[Length[Select[ks[n],SameQ@@Length/@Split[#]&]],{n,30}]

A363994 a(n) is the number of partitions of n whose difference multiset has no duplicates; see Comments.

Original entry on oeis.org

1, 1, 2, 2, 3, 3, 4, 5, 7, 6, 10, 11, 11, 15, 18, 18, 25, 29, 28, 38, 44, 47, 54, 67, 68, 84, 88, 102, 114, 137, 132, 167, 180, 204, 214, 261, 264, 315, 328, 377, 414, 476, 473, 564, 603, 677, 708, 820, 846, 969, 1028, 1131, 1214, 1364, 1414, 1596, 1701, 1858
Offset: 0

Views

Author

Clark Kimberling, Sep 08 2023

Keywords

Comments

If M is a multiset of real numbers, then the difference multiset of M consists of the differences of pairs of numbers in M. For example, the difference multiset of {1,2,2,5} is {0,1,1,3,3,4}.

Examples

			The partitions of 8 are [8], [7,1], [6,2], [6,1,1], [5,3], [5,2,1], [5,1,1,1], [4,4], [4,3,1], [4,2,2], [4,2,1,1], [4,1,1,1,1], [3,3,2], [3,3,1,1], [3,2,2,1], [3,2,1,1,1], [3,1,1,1,1,1], [2,2,2,2], [2,2,2,1,1], [2,2,1,1,1,1], [2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1].
The 7 partitions whose difference multiset is duplicate-free are [8], [7,1], [6,2], [5,3], [5,2,1], [4,4], [4,3,1].
		

Crossrefs

Programs

  • Mathematica
    s[n_, k_] := s[n, k] = Subsets[IntegerPartitions[n][[k]], {2}]
    g[n_, k_] := g[n, k] = DuplicateFreeQ[Map[Differences, s[n, k]]]
    t[n_] := t[n] = Table[g[n, k], {k, 1, PartitionsP[n]}];
    a[n_] := Count[t[n], True];
    Table[a[n], {n, 1, 20}]
  • Python
    from collections import Counter
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A363994(n): return sum(1 for p in partitions(n) if max(list(Counter(abs(d[0]-d[1]) for d in combinations(list(Counter(p).elements()),2)).values()),default=1)==1) # Chai Wah Wu, Sep 17 2023

Formula

a(n) = A000041(n) - A364612(n).
a(n) = A325876(n) - (1 - n mod 2) for n > 0. - Andrew Howroyd, Sep 17 2023

Extensions

More terms from Alois P. Heinz, Sep 12 2023
Previous Showing 11-20 of 20 results.