cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 31-40 of 86 results. Next

A351018 Number of integer compositions of n with all distinct even-indexed parts and all distinct odd-indexed parts.

Original entry on oeis.org

1, 1, 2, 3, 6, 9, 18, 27, 46, 77, 122, 191, 326, 497, 786, 1207, 1942, 2905, 4498, 6703, 10574, 15597, 23754, 35043, 52422, 78369, 115522, 169499, 248150, 360521, 532466, 768275, 1116126, 1606669, 2314426, 3301879, 4777078, 6772657, 9677138, 13688079, 19406214
Offset: 0

Views

Author

Gus Wiseman, Feb 09 2022

Keywords

Comments

Also the number of binary words of length n starting with 1 and having all distinct runs (ranked by A175413, counted by A351016).

Examples

			The a(1) = 1 through a(6) = 18 compositions:
  (1)  (2)    (3)    (4)      (5)      (6)
       (1,1)  (1,2)  (1,3)    (1,4)    (1,5)
              (2,1)  (2,2)    (2,3)    (2,4)
                     (3,1)    (3,2)    (3,3)
                     (1,1,2)  (4,1)    (4,2)
                     (2,1,1)  (1,1,3)  (5,1)
                              (1,2,2)  (1,1,4)
                              (2,2,1)  (1,2,3)
                              (3,1,1)  (1,3,2)
                                       (2,1,3)
                                       (2,3,1)
                                       (3,1,2)
                                       (3,2,1)
                                       (4,1,1)
                                       (1,1,2,2)
                                       (1,2,2,1)
                                       (2,1,1,2)
                                       (2,2,1,1)
		

Crossrefs

The case of partitions is A000726.
The version for run-lengths instead of runs is A032020.
These words are ranked by A175413.
A005811 counts runs in binary expansion.
A011782 counts integer compositions.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A116608 counts compositions by number of distinct parts.
A238130 and A238279 count compositions by number of runs.
A242882 counts compositions with distinct multiplicities.
A297770 counts distinct runs in binary expansion.
A325545 counts compositions with distinct differences.
A329738 counts compositions with equal run-lengths.
A329744 counts compositions by runs-resistance.
A351014 counts distinct runs in standard compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[Tuples[{0,1},n],#=={}||First[#]==1&&UnsameQ@@Split[#]&]],{n,0,10}]
  • PARI
    P(n)=prod(k=1, n, 1 + y*x^k + O(x*x^n));
    seq(n)=my(p=P(n)); Vec(sum(k=0, n, polcoef(p,k\2,y)*(k\2)!*polcoef(p,(k+1)\2,y)*((k+1)\2)!)) \\ Andrew Howroyd, Feb 11 2022

Formula

a(n>0) = A351016(n)/2.
G.f.: Sum_{k>=0} floor(k/2)! * ceiling(k/2)! * ([y^floor(k/2)] P(x,y)) * ([y^ceiling(k/2)] P(x,y)), where P(x,y) = Product_{k>=1} 1 + y*x^k. - Andrew Howroyd, Feb 11 2022

Extensions

Terms a(21) and beyond from Andrew Howroyd, Feb 11 2022

A382876 Number of ways to permute the prime indices of n so that the run-sums are all different.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 0, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 1, 2, 1, 2, 1, 6, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2, 1, 6, 1, 2, 2, 2, 1, 4, 1, 2, 2, 2, 1, 4, 2, 4, 2, 2, 1, 0, 1, 2, 0, 1, 2, 6, 1, 2, 2, 6, 1, 4, 1, 2, 2, 2, 2, 6, 1, 2, 1, 2, 1, 0, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Apr 12 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.
A run in a sequence is a constant consecutive subsequence. The run-sums of a sequence are obtained by splitting it into maximal runs and taking their sums. See A353932 for run-sums of standard compositions.

Examples

			For n = 12, none of the permutations (1,1,2), (1,2,1), (2,1,1) has distinct run-sums, so a(12) = 0.
The prime indices of 36 are {1,1,2,2}, and we have permutations: (1,1,2,2), (2,2,1,1), so a(36) = 2.
For n = 90 we have:
  (1,2,2,3)
  (1,3,2,2)
  (2,2,1,3)
  (2,2,3,1)
  (3,1,2,2)
  (3,2,2,1)
So a(90) = 6. The 6 missing permutations are: (1,2,3,2), (2,1,2,3), (2,1,3,2), (2,3,1,2), (2,3,2,1), (3,2,1,2).
		

Crossrefs

Positions of 1 are A000961.
Compositions of this type are counted by A353850, ranked by A353852.
Positions of 0 appear to be A381636, for equal run-sums A383100.
For run-lengths instead of sums we have A382771, equal A382857 (zeros A382879).
For equal instead of distinct run-sums we have A382877.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A056239 adds up prime indices, row sums of A112798.
A304442 counts compositions with equal run-sums, complement A382076.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A353837 counts partitions with distinct run-sums, ranks A353838.
A353847 gives composition run-sum transformation, for partitions A353832.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    Table[Length[Select[Permutations[PrimePi /@ Join@@ConstantArray@@@FactorInteger[n]], UnsameQ@@Total/@Split[#]&]],{n,100}]

A383013 Number of integer partitions of n having a permutation with all equal run-lengths.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 18, 21, 31, 38, 56, 67, 94, 121, 162, 199, 265, 330, 438, 543, 693, 859, 1103, 1353, 1702, 2097, 2619, 3194, 3972, 4821, 5943, 7206, 8796, 10632, 12938, 15536, 18794, 22539, 27133, 32374, 38827, 46175, 55134, 65421, 77751, 91951, 109011, 128482
Offset: 0

Views

Author

Gus Wiseman, Apr 12 2025

Keywords

Comments

A partition of n counts towards a(n) if and only if #p + g >= 2*L where #p is the number of parts counted with multiplicity of the partition, g is the gcd of all the frequencies of every distinct part and L is the largest frequency of a part. - David A. Corneth, Apr 27 2025

Examples

			The partition (2,2,1,1,1,1) has permutation (1,1,2,2,1,1) with equal run-lengths (2,2,2) so is counted under a(8).
The a(1) = 1 through a(8) = 18 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (211)   (221)    (51)      (61)       (62)
                    (1111)  (311)    (222)     (322)      (71)
                            (11111)  (321)     (331)      (332)
                                     (411)     (421)      (422)
                                     (2211)    (511)      (431)
                                     (111111)  (3211)     (521)
                                               (22111)    (611)
                                               (1111111)  (2222)
                                                          (3221)
                                                          (3311)
                                                          (4211)
                                                          (22211)
                                                          (32111)
                                                          (221111)
                                                          (11111111)
		

Crossrefs

For distinct instead of equal run-lengths we have A239455, ranked by A351294.
The complement for distinct run-lengths is A351293, ranked by A351295.
The complement is counted by A382915, ranked by A382879, by signature A382914.
A000041 counts integer partitions, strict A000009.
A304442 counts partitions with equal run-sums, ranks A353833.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A382857 counts permutations of prime indices with equal run-lengths, firsts A382878.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#], SameQ@@Length/@Split[#]&]!={}&]],{n,0,15}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A384886 Number of strict integer partitions of n with all equal lengths of maximal runs (decreasing by 1).

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 4, 7, 7, 8, 11, 11, 14, 17, 19, 20, 27, 27, 35, 38, 45, 47, 60, 63, 75, 84, 97, 104, 127, 134, 155, 175, 196, 218, 251, 272, 307, 346, 384, 424, 480, 526, 586, 658, 719, 798, 890, 979, 1078, 1201, 1315, 1451, 1603, 1762, 1934, 2137
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2025

Keywords

Examples

			The strict partition y = (7,6,5,3,2,1) has maximal runs ((7,6,5),(3,2,1)), with lengths (3,3), so y is counted under a(24).
The a(1) = 1 through a(14) = 14 partitions (A-E = 10-14):
  1  2  3   4   5   6    7   8   9    A     B    C     D    E
        21  31  32  42   43  53  54   64    65   75    76   86
                41  51   52  62  63   73    74   84    85   95
                    321  61  71  72   82    83   93    94   A4
                                 81   91    92   A2    A3   B3
                                 432  631   A1   B1    B2   C2
                                 531  4321  641  543   C1   D1
                                            731  642   742  752
                                                 741   751  842
                                                 831   841  851
                                                 5421  931  941
                                                            A31
                                                            5432
                                                            6521
		

Crossrefs

For subsets instead of strict partitions we have A243815, distinct lengths A384175.
For distinct instead of equal lengths we have A384178, for anti-runs A384880.
This is the strict case of A384904, distinct lengths A384884.
A000041 counts integer partitions, strict A000009.
A047993 counts partitions with max part = length (A106529).
A098859 counts Wilf partitions (complement A336866), compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&SameQ@@Length/@Split[#,#2==#1-1&]&]],{n,0,15}]
  • PARI
    A_q(N) = {Vec(1+sum(k=1,floor(-1/2+sqrt(2+2*N)), sum(i=1,(N/(k*(k+1)/2))+1, q^(k*(k+1)*i^2/2)/prod(j=1,i, 1 - q^(j*k)))) + O('q^(N+1)))} \\ John Tyler Rascoe, Aug 21 2025

Formula

G.f.: 1 + Sum_{i,k>0} q^(k*(k+1)*i^2/2)/Product_{j=1..i} (1 - q^(j*k)). - John Tyler Rascoe, Aug 21 2025

A329766 Number of compositions of n whose run-lengths cover an initial interval of positive integers.

Original entry on oeis.org

1, 1, 1, 3, 6, 13, 21, 48, 89, 180, 355, 707, 1382, 2758, 5448, 10786, 21391, 42476, 84291, 167516, 333036, 662153, 1317687, 2622706, 5221951, 10400350, 20720877, 41288823, 82294979, 164052035, 327088649, 652238016, 1300788712, 2594486045, 5175378128, 10324522020
Offset: 0

Views

Author

Gus Wiseman, Nov 20 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers with sum n.

Examples

			The a(0) = 1 through a(5) = 13 compositions:
  ()  (1)  (2)  (3)    (4)      (5)
                (1,2)  (1,3)    (1,4)
                (2,1)  (3,1)    (2,3)
                       (1,1,2)  (3,2)
                       (1,2,1)  (4,1)
                       (2,1,1)  (1,1,3)
                                (1,2,2)
                                (1,3,1)
                                (2,1,2)
                                (2,2,1)
                                (3,1,1)
                                (1,1,2,1)
                                (1,2,1,1)
		

Crossrefs

Looking at multiplicities instead of run-lengths gives A329741.
The complete case is A329749.
Complete compositions are A107429.

Programs

  • Mathematica
    normQ[m_]:=Or[m=={},Union[m]==Range[Max[m]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],normQ[Length/@Split[#]]&]],{n,0,10}]

Extensions

a(21)-a(26) from Giovanni Resta, Nov 22 2019
a(27)-a(35) from Alois P. Heinz, Jul 06 2020

A382877 Number of ways to permute the prime indices of n so that the run-sums are all equal.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Apr 14 2025

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, sum A056239.

Examples

			The a(144) = 4 permutations of {1,1,1,1,2,2} are:
  (1,1,1,1,2,2)
  (1,1,2,1,1,2)
  (2,1,1,2,1,1)
  (2,2,1,1,1,1)
The a(1728) = 4 permutations are:
  (1,1,1,1,1,1,2,2,2)
  (1,1,2,1,1,2,1,1,2)
  (2,1,1,2,1,1,2,1,1)
  (2,2,2,1,1,1,1,1,1)
		

Crossrefs

Compositions of this type are counted by A353851, ranked by A353848.
For run-lengths instead of sums we have A382857 (zeros A382879), distinct A382771.
For distinct instead of equal run-sums we have A382876, counted by A353850.
Positions of terms > 1 are A383015.
Positions of 1 are A383099.
Positions of 0 are A383100 (complement A383110), counted by A383098.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A056239 adds up prime indices, row sums of A112798.
A304442 counts compositions with equal run-sums, complement A382076.
A329739 counts compositions with distinct run-lengths, ranks A351596.
A353837 counts partitions with distinct run-sums, ranks A353838.
A353847 gives composition run-sum transformation, for partitions A353832.
A353932 lists run-sums of standard compositions.

Programs

  • Mathematica
    Table[Length[Select[Permutations[PrimePi/@Join @@ ConstantArray@@@FactorInteger[n]], SameQ@@Total/@Split[#]&]],{n,100}]

A243815 Number of length n words on alphabet {0,1} such that the length of every maximal block of 0's (runs) is the same.

Original entry on oeis.org

1, 2, 4, 8, 14, 24, 39, 62, 97, 151, 233, 360, 557, 864, 1344, 2099, 3290, 5176, 8169, 12931, 20524, 32654, 52060, 83149, 133012, 213069, 341718, 548614, 881572, 1417722, 2281517, 3673830, 5918958, 9540577, 15384490, 24817031, 40045768, 64637963, 104358789
Offset: 0

Views

Author

Geoffrey Critzer, Jun 11 2014

Keywords

Comments

Number of terms of A164710 with exactly n+1 binary digits. - Robert Israel, Nov 09 2015
From Gus Wiseman, Jun 23 2025: (Start)
This is the number of subsets of {1..n} with all equal lengths of runs of consecutive elements increasing by 1. For example, the runs of S = {1,2,5,6,8,9} are ((1,2),(5,6),(8,9)), with lengths (2,2,2), so S is counted under a(9). The a(0) = 1 through a(4) = 14 subsets are:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{1,2} {3} {3}
{1,2} {4}
{1,3} {1,2}
{2,3} {1,3}
{1,2,3} {1,4}
{2,3}
{2,4}
{3,4}
{1,2,3}
{2,3,4}
{1,2,3,4}
(End)

Examples

			0110 is a "good" word because the length of both its runs of 0's is 1.
Words of the form 11...1 are good words because the condition is vacuously satisfied.
a(5) = 24 because there are 32 length 5 binary words but we do not count: 00010, 00101, 00110, 01000, 01001, 01100, 10010, 10100.
		

Crossrefs

Cf. A164710.
These subsets are ranked by A164707, complement A164708.
For distinct instead of equal lengths we have A384175, complement A384176.
For anti-runs instead of runs we have A384889, for partitions A384888.
For permutations instead of subsets we have A384892, distinct instead of equal A384891.
For partitions instead of subsets we have A384904, strict A384886.
The complement is counted by A385214.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A049988 counts partitions with equal run-lengths, distinct A325325.
A329738 counts compositions with equal run-lengths, distinct A329739.
A384887 counts partitions with equal lengths of gapless runs, distinct A384884.

Programs

  • Maple
    a:= n-> 1 + add(add((d-> binomial(d+j, d))(n-(i*j-1))
              , j=1..iquo(n+1, i)), i=2..n+1):
    seq(a(n), n=0..50);  # Alois P. Heinz, Jun 11 2014
  • Mathematica
    nn=30;Prepend[Map[Total,Transpose[Table[Drop[CoefficientList[Series[ (1+x^k)/(1-x-x^(k+1))-1/(1-x),{x,0,nn}],x],1],{k,1,nn}]]],0]+1
    Table[Length[Select[Subsets[Range[n]],SameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}] (* Gus Wiseman, Jun 23 2025 *)

A351201 Numbers whose multiset of prime factors has a permutation without all distinct runs.

Original entry on oeis.org

12, 18, 20, 28, 36, 44, 45, 48, 50, 52, 60, 63, 68, 72, 75, 76, 80, 84, 90, 92, 98, 99, 100, 108, 112, 116, 117, 120, 124, 126, 132, 140, 144, 147, 148, 150, 153, 156, 162, 164, 168, 171, 172, 175, 176, 180, 188, 192, 196, 198, 200, 204, 207, 208, 212, 216
Offset: 1

Views

Author

Gus Wiseman, Feb 12 2022

Keywords

Examples

			The prime factors of 80 are {2,2,2,2,5} and the permutation (2,2,5,2,2) has runs (2,2), (5), and (2,2), which are not all distinct, so 80 is in the sequence. On the other hand, 24 has prime factors {2,2,2,3}, and all four permutations (3,2,2,2), (2,3,2,2), (2,2,3,2), (2,2,2,3) have distinct runs, so 24 is not in the sequence.
The terms and their prime indices begin:
     12: (2,1,1)         76: (8,1,1)        132: (5,2,1,1)
     18: (2,2,1)         80: (3,1,1,1,1)    140: (4,3,1,1)
     20: (3,1,1)         84: (4,2,1,1)      144: (2,2,1,1,1,1)
     28: (4,1,1)         90: (3,2,2,1)      147: (4,4,2)
     36: (2,2,1,1)       92: (9,1,1)        148: (12,1,1)
     44: (5,1,1)         98: (4,4,1)        150: (3,3,2,1)
     45: (3,2,2)         99: (5,2,2)        153: (7,2,2)
     48: (2,1,1,1,1)    100: (3,3,1,1)      156: (6,2,1,1)
     50: (3,3,1)        108: (2,2,2,1,1)    162: (2,2,2,2,1)
     52: (6,1,1)        112: (4,1,1,1,1)    164: (13,1,1)
     60: (3,2,1,1)      116: (10,1,1)       168: (4,2,1,1,1)
     63: (4,2,2)        117: (6,2,2)        171: (8,2,2)
     68: (7,1,1)        120: (3,2,1,1,1)    172: (14,1,1)
     72: (2,2,1,1,1)    124: (11,1,1)       175: (4,3,3)
     75: (3,3,2)        126: (4,2,2,1)      176: (5,1,1,1,1)
		

Crossrefs

The version for run-lengths instead of runs is A024619.
These permutations are counted by A351202.
These rank the partitions counted by A351203, complement A351204.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A056239 adds up prime indices, row sums of A112798.
A283353 counts normal multisets with a permutation w/o all distinct runs.
A297770 counts distinct runs in binary expansion.
A333489 ranks anti-runs, complement A348612.
A351014 counts distinct runs in standard compositions, firsts A351015.
A351291 ranks compositions without all distinct runs.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.

Programs

  • Mathematica
    Select[Range[100],Select[Permutations[Join@@ ConstantArray@@@FactorInteger[#]],!UnsameQ@@Split[#]&]!={}&]

A351204 Number of integer partitions of n such that every permutation has all distinct runs.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 9, 11, 14, 18, 20, 25, 28, 34, 41, 47, 53, 64, 72, 84, 98, 113, 128, 148, 169, 194, 223, 255, 289, 333, 377, 428, 488, 554, 629, 715, 807, 913, 1033, 1166, 1313, 1483, 1667, 1875, 2111, 2369, 2655, 2977, 3332, 3729, 4170, 4657, 5195, 5797, 6459
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2022

Keywords

Comments

Partitions enumerated by this sequence include those in which all parts are either the same or distinct as well as partitions with an even number of parts all of which except one are the same. - Andrew Howroyd, Feb 15 2022

Examples

			The a(1) = 1 through a(8) = 11 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (1111)  (2111)   (51)      (61)       (62)
                            (11111)  (222)     (421)      (71)
                                     (321)     (2221)     (431)
                                     (3111)    (4111)     (521)
                                     (111111)  (211111)   (2222)
                                               (1111111)  (5111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

The version for run-lengths instead of runs is A000005.
The version for normal multisets is 2^(n-1) - A283353(n-3).
The complement is counted by A351203, ranked by A351201.
A005811 counts runs in binary expansion.
A044813 lists numbers whose binary expansion has distinct run-lengths.
A059966 counts Lyndon compositions, necklaces A008965, aperiodic A000740.
A098859 counts partitions with distinct multiplicities, ordered A242882.
A238130 and A238279 count compositions by number of runs.
A297770 counts distinct runs in binary expansion.
A003242 counts anti-run compositions.
Counting words with all distinct runs:
- A351013 = compositions, for run-lengths A329739, ranked by A351290.
- A351016 = binary words, for run-lengths A351017.
- A351018 = binary expansions, for run-lengths A032020, ranked by A175413.
- A351200 = patterns, for run-lengths A351292.
- A351202 = permutations of prime factors.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Select[Permutations[#],!UnsameQ@@Split[#]&]=={}&]],{n,0,15}]
  • PARI
    \\ here Q(n) is A000009.
    Q(n)={polcoef(prod(k=1, n, 1 + x^k + O(x*x^n)), n)}
    a(n)={Q(n) + if(n, numdiv(n) - 1) + sum(k=1, (n-1)\3, sum(j=3, (n-1)\k, j%2==1 && n-k*j<>k))} \\ Andrew Howroyd, Feb 15 2022

Extensions

Terms a(26) and beyond from Andrew Howroyd, Feb 15 2022

A384880 Number of strict integer partitions of n with all distinct lengths of maximal anti-runs (decreasing by more than 1).

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 3, 4, 6, 6, 9, 10, 12, 15, 18, 21, 25, 30, 34, 41, 46, 55, 63, 75, 85, 99, 114, 133, 152, 178, 201, 236, 269, 308, 352, 404, 460, 525, 594, 674, 763, 865, 974, 1098, 1236, 1385, 1558, 1745, 1952, 2181, 2435, 2712, 3026, 3363, 3740, 4151, 4612
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2025

Keywords

Examples

			The strict partition y = (10,7,6,4,2,1) has maximal anti-runs ((10,7),(6,4,2),(1)), with lengths (2,3,1), so y is counted under a(30).
The a(1) = 1 through a(14) = 18 partitions (A-E = 10-14):
  1  2  3  4   5   6   7    8    9    A    B    C    D     E
           31  41  42  52   53   63   64   74   75   85    86
                   51  61   62   72   73   83   84   94    95
                       421  71   81   82   92   93   A3    A4
                            431  531  91   A1   A2   B2    B3
                            521  621  532  542  B1   C1    C2
                                      541  632  642  643   D1
                                      631  641  651  652   653
                                      721  731  732  742   743
                                           821  741  751   752
                                                831  832   761
                                                921  841   842
                                                     931   851
                                                     A21   932
                                                     6421  941
                                                           A31
                                                           B21
                                                           7421
		

Crossrefs

For subsets instead of strict partitions we have A384177.
For runs instead of anti-runs we have A384178.
This is the strict case of A384885.
A000041 counts integer partitions, strict A000009.
A047993 counts partitions with max part = length.
A098859 counts Wilf partitions (complement A336866), compositions A242882.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A351293 counts non-Look-and-Say or non-section-sum partitions, ranks A351295 or A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Length/@Split[#,#2<#1-1&]&]],{n,0,30}]
Previous Showing 31-40 of 86 results. Next