cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 58 results. Next

A329861 Triangle read by rows where T(n,k) is the number of compositions of n with cuts-resistance k.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 0, 1, 0, 4, 3, 0, 1, 0, 7, 6, 2, 0, 1, 0, 14, 9, 6, 2, 0, 1, 0, 23, 22, 10, 6, 2, 0, 1, 0, 39, 47, 22, 10, 7, 2, 0, 1, 0, 71, 88, 52, 24, 10, 8, 2, 0, 1, 0, 124, 179, 101, 59, 26, 11, 9, 2, 0, 1, 0, 214, 354, 220, 112, 71, 28, 12, 10, 2, 0, 1
Offset: 0

Views

Author

Gus Wiseman, Nov 23 2019

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
For the operation of shortening all runs by 1, cuts-resistance is defined as the number of applications required to reach an empty word.

Examples

			Triangle begins:
  1
  0  1
  0  1  1
  0  3  0  1
  0  4  3  0  1
  0  7  6  2  0  1
  0 14  9  6  2  0  1
  0 23 22 10  6  2  0  1
  0 39 47 22 10  7  2  0  1
  0 71 88 52 24 10  8  2  0  1
Row n = 6 counts the following compositions (empty columns not shown):
  (6)     (33)    (222)    (11112)  (111111)
  (15)    (114)   (1113)   (21111)
  (24)    (411)   (3111)
  (42)    (1122)  (11121)
  (51)    (1131)  (11211)
  (123)   (1221)  (12111)
  (132)   (1311)
  (141)   (2112)
  (213)   (2211)
  (231)
  (312)
  (321)
  (1212)
  (2121)
		

Crossrefs

Row sums are A000079.
Column k = 1 is A003242 (for n > 0).
Column k = 2 is A329863.
Row sums without the k = 1 column are A261983.
The version for runs-resistance is A329744.
The version for binary vectors is A329860.
The cuts-resistance of the binary expansion of n is A319416.

Programs

  • Mathematica
    degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],degdep[#]==k&]],{n,0,10},{k,0,n}]

A333769 Irregular triangle read by rows where row k is the sequence of run-lengths of the k-th composition in standard order.

Original entry on oeis.org

1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Apr 10 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The standard compositions and their run-lengths:
   0:        () -> ()
   1:       (1) -> (1)
   2:       (2) -> (1)
   3:     (1,1) -> (2)
   4:       (3) -> (1)
   5:     (2,1) -> (1,1)
   6:     (1,2) -> (1,1)
   7:   (1,1,1) -> (3)
   8:       (4) -> (1)
   9:     (3,1) -> (1,1)
  10:     (2,2) -> (2)
  11:   (2,1,1) -> (1,2)
  12:     (1,3) -> (1,1)
  13:   (1,2,1) -> (1,1,1)
  14:   (1,1,2) -> (2,1)
  15: (1,1,1,1) -> (4)
  16:       (5) -> (1)
  17:     (4,1) -> (1,1)
  18:     (3,2) -> (1,1)
  19:   (3,1,1) -> (1,2)
For example, the 119th composition is (1,1,2,1,1,1), so row 119 is (2,1,3).
		

Crossrefs

Row sums are A000120.
Row lengths are A124767.
Row k is the A333627(k)-th standard composition.
A triangle counting compositions by runs-resistance is A329744.
All of the following pertain to compositions in standard order (A066099):
- Partial sums from the right are A048793.
- Sum is A070939.
- Adjacent equal pairs are counted by A124762.
- Strict compositions are A233564.
- Partial sums from the left are A272020.
- Constant compositions are A272919.
- Normal compositions are A333217.
- Heinz number is A333219.
- Runs-resistance is A333628.
- First appearances of run-resistances are A333629.
- Combinatory separations are A334030.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    Table[Length/@Split[stc[n]],{n,0,30}]

A332340 Number of widely alternately co-strongly normal compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 4, 9, 11, 13, 23, 53, 78, 120, 207, 357, 707, 1183, 2030, 3558, 6229, 10868
Offset: 0

Views

Author

Gus Wiseman, Feb 17 2020

Keywords

Comments

An integer partition is widely alternately co-strongly normal if either it is constant 1's (wide) or it covers an initial interval of positive integers (normal) with weakly increasing run-length (co-strong) which, if reversed, are themselves a widely alternately co-strongly normal partition.

Examples

			The a(1) = 1 through a(8) = 13 compositions:
  (1)  (11)  (12)   (121)   (122)    (123)     (1213)     (1232)
             (21)   (211)   (212)    (132)     (1231)     (1322)
             (111)  (1111)  (1211)   (213)     (1312)     (2123)
                            (11111)  (231)     (1321)     (2132)
                                     (312)     (2122)     (2312)
                                     (321)     (2131)     (2321)
                                     (1212)    (2311)     (3122)
                                     (2121)    (3121)     (3212)
                                     (111111)  (3211)     (12131)
                                               (12121)    (13121)
                                               (1111111)  (21212)
                                                          (122111)
                                                          (11111111)
For example, starting with the composition y = (122111) and repeatedly taking run-lengths and reversing gives (122111) -> (321) -> (111). All of these are normal with weakly increasing run-lengths and the last is all 1's, so y is counted under a(8).
		

Crossrefs

Normal compositions are A107429.
Compositions with normal run-lengths are A329766.
The Heinz numbers of the case of partitions are A332290.
The case of partitions is A332289.
The total (instead of alternating) version is A332337.
Not requiring normality gives A332338.
The strong version is this same sequence.
The narrow version is a(n) + 1 for n > 1.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Reverse[Length/@Split[ptn]]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],totnQ]],{n,0,10}]

A329865 Numbers whose binary expansion has the same runs-resistance as cuts-resistance.

Original entry on oeis.org

0, 8, 12, 14, 17, 24, 27, 28, 35, 36, 39, 47, 49, 51, 54, 57, 61, 70, 73, 78, 80, 99, 122, 130, 156, 175, 184, 189, 190, 198, 204, 207, 208, 215, 216, 226, 228, 235, 243, 244, 245, 261, 271, 283, 295, 304, 313, 321, 322, 336, 352, 367, 375, 378, 379, 380, 386
Offset: 1

Views

Author

Gus Wiseman, Nov 23 2019

Keywords

Comments

For the operation of taking the sequence of run-lengths of a finite sequence, runs-resistance is defined to be the number of applications required to reach a singleton.
For the operation of shortening all runs by 1, cuts-resistance is defined to be the number of applications required to reach an empty word.

Examples

			The sequence of terms together with their binary expansions begins:
    0:
    8:      1000
   12:      1100
   14:      1110
   17:     10001
   24:     11000
   27:     11011
   28:     11100
   35:    100011
   36:    100100
   39:    100111
   47:    101111
   49:    110001
   51:    110011
   54:    110110
   57:    111001
   61:    111101
   70:   1000110
   73:   1001001
   78:   1001110
   80:   1010000
For example, 36 has runs-resistance 3 because we have (100100) -> (1212) -> (1111) -> (4), while the cuts-resistance is also 3 because we have (100100) -> (00) -> (0) -> ().
Similarly, 57 has runs-resistance 3 because we have (111001) -> (321) -> (111) -> (3), while the cuts-resistance is also 3 because we have (111001) -> (110) -> (1) -> ().
		

Crossrefs

Positions of 0's in A329867.
The version for runs-resistance equal to cuts-resistance minus 1 is A329866.
Compositions with runs-resistance equal to cuts-resistance are A329864.
Runs-resistance of binary expansion is A318928.
Cuts-resistance of binary expansion is A319416.
Compositions counted by runs-resistance are A329744.
Compositions counted by cuts-resistance are A329861.
Binary words counted by runs-resistance are A319411 and A329767.
Binary words counted by cuts-resistance are A319421 and A329860.

Programs

  • Mathematica
    runsres[q_]:=Length[NestWhileList[Length/@Split[#]&,q,Length[#]>1&]]-1;
    degdep[q_]:=Length[NestWhileList[Join@@Rest/@Split[#]&,q,Length[#]>0&]]-1;
    Select[Range[0,100],#==0||runsres[IntegerDigits[#,2]]==degdep[IntegerDigits[#,2]]&]

A332836 Number of compositions of n whose run-lengths are weakly increasing.

Original entry on oeis.org

1, 1, 2, 4, 7, 12, 24, 40, 73, 128, 230, 399, 712, 1241, 2192, 3833, 6746, 11792, 20711, 36230, 63532, 111163, 194782, 340859, 596961, 1044748, 1829241, 3201427, 5604504, 9808976, 17170112, 30051470, 52601074, 92063629, 161140256, 282033124, 493637137, 863982135, 1512197655
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
Also compositions whose run-lengths are weakly decreasing.

Examples

			The a(0) = 1 through a(5) = 12 compositions:
  ()  (1)  (2)   (3)    (4)     (5)
           (11)  (12)   (13)    (14)
                 (21)   (22)    (23)
                 (111)  (31)    (32)
                        (121)   (41)
                        (211)   (122)
                        (1111)  (131)
                                (212)
                                (311)
                                (1211)
                                (2111)
                                (11111)
For example, the composition (2,3,2,2,1,1,2,2,2) has run-lengths (1,1,2,2,3) so is counted under a(17).
		

Crossrefs

The version for the compositions themselves (not run-lengths) is A000041.
The case of partitions is A100883.
The case of unsorted prime signature is A304678, with dual A242031.
Permitting the run-lengths to be weakly decreasing also gives A332835.
The complement is counted by A332871.
Unimodal compositions are A001523.
Compositions that are not unimodal are A115981.
Compositions with equal run-lengths are A329738.
Compositions whose run-lengths are unimodal are A332726.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],LessEqual@@Length/@Split[#]&]],{n,0,10}]
  • PARI
    step(M, m)={my(n=matsize(M)[1]); for(p=m+1, n, my(v=vector((p-1)\m, i, M[p-i*m,i]), s=vecsum(v)); M[p,]+=vector(#M,i,s-if(i<=#v, v[i]))); M}
    seq(n)={my(M=matrix(n+1, n, i, j, i==1)); for(m=1, n, M=step(M, m)); M[1,n]=0; vector(n+1, i, vecsum(M[i,]))/(n-1)} \\ Andrew Howroyd, Dec 31 2020

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 30 2020

A332337 Number of widely totally strongly normal compositions of n.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 9, 9, 12, 23, 54, 77, 116, 205, 352, 697, 1174, 2013, 3538, 6209, 10830
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2020

Keywords

Comments

A sequence is widely totally strongly normal if either it is all 1's (wide) or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) that are themselves a widely totally strongly normal sequence.

Examples

			The a(1) = 1 through a(8) = 12 compositions:
  (1)  (11)  (12)   (112)   (212)    (123)     (1213)     (1232)
             (21)   (121)   (221)    (132)     (1231)     (2123)
             (111)  (1111)  (11111)  (213)     (1312)     (2132)
                                     (231)     (1321)     (2312)
                                     (312)     (2131)     (2321)
                                     (321)     (3121)     (3212)
                                     (1212)    (11221)    (12131)
                                     (2121)    (12121)    (13121)
                                     (111111)  (1111111)  (21212)
                                                          (22112)
                                                          (111221)
                                                          (11111111)
For example, starting with (22112) and repeated taking run-lengths gives (22112) -> (221) -> (21) -> (11). These are all normal with weakly decreasing run-lengths, and the last is all 1's, so (22112) is counted under a(8).
		

Crossrefs

Normal compositions are A107429.
The case of partitions is A332278.
The non-strong version is A332279.
Heinz numbers in the case of partitions are A332291.
The narrow version is A332336.
The alternating version is A332340.
The co-strong version is this same sequence.

Programs

  • Mathematica
    totnQ[ptn_]:=Or[ptn=={},Union[ptn]=={1},And[Union[ptn]==Range[Max[ptn]],LessEqual@@Length/@Split[ptn],totnQ[Length/@Split[ptn]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],totnQ]],{n,0,10}]

Formula

For n > 1, a(n) = A332336(n) - 1.

A332727 Number of compositions of n whose run-lengths are not unimodal.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 3, 8, 28, 74, 188, 468, 1120, 2596, 5944, 13324, 29437, 64288, 138929, 297442, 632074, 1333897, 2798352, 5840164, 12132638, 25102232, 51750419, 106346704, 217921161, 445424102, 908376235, 1848753273, 3755839591, 7617835520, 15428584567, 31207263000
Offset: 0

Views

Author

Gus Wiseman, Feb 29 2020

Keywords

Comments

A sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(6) = 1 through a(8) = 8 compositions:
  (11211)  (11311)   (11411)
           (111211)  (111311)
           (112111)  (112112)
                     (113111)
                     (211211)
                     (1111211)
                     (1112111)
                     (1121111)
		

Crossrefs

Looking at the composition itself (not its run-lengths) gives A115981.
The case of partitions is A332281, with complement counted by A332280.
The complement is counted by A332726.
Unimodal compositions are A001523.
Non-unimodal normal sequences are A328509.
Compositions with normal run-lengths are A329766.
Numbers whose prime signature is not unimodal are A332282.
Partitions whose 0-appended first differences are unimodal are A332283, with complement A332284, with Heinz numbers A332287.
Compositions whose negation is not unimodal are A332669.
Compositions whose run-lengths are weakly increasing are A332836.

Programs

  • Mathematica
    unimodQ[q_]:=Or[Length[q]<=1,If[q[[1]]<=q[[2]],unimodQ[Rest[q]],OrderedQ[Reverse[q]]]]
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!unimodQ[Length/@Split[#]]&]],{n,0,10}]

Formula

a(n) + A332726(n) = 2^(n - 1).

Extensions

Terms a(21) and beyond from Andrew Howroyd, Dec 31 2020

A334965 Numbers with strictly increasing prime multiplicities.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 18, 19, 23, 25, 27, 29, 31, 32, 37, 41, 43, 47, 49, 50, 53, 54, 59, 61, 64, 67, 71, 73, 75, 79, 81, 83, 89, 97, 98, 101, 103, 107, 108, 109, 113, 121, 125, 127, 128, 131, 137, 139, 147, 149, 151, 157, 162, 163, 167, 169
Offset: 1

Views

Author

Gus Wiseman, May 18 2020

Keywords

Comments

First differs from A329131 in lacking 150.
Also numbers whose unsorted prime signature is strictly increasing.

Examples

			The sequence of terms together with their prime indices begins:
    1: {}            25: {3,3}           64: {1,1,1,1,1,1}
    2: {1}           27: {2,2,2}         67: {19}
    3: {2}           29: {10}            71: {20}
    4: {1,1}         31: {11}            73: {21}
    5: {3}           32: {1,1,1,1,1}     75: {2,3,3}
    7: {4}           37: {12}            79: {22}
    8: {1,1,1}       41: {13}            81: {2,2,2,2}
    9: {2,2}         43: {14}            83: {23}
   11: {5}           47: {15}            89: {24}
   13: {6}           49: {4,4}           97: {25}
   16: {1,1,1,1}     50: {1,3,3}         98: {1,4,4}
   17: {7}           53: {16}           101: {26}
   18: {1,2,2}       54: {1,2,2,2}      103: {27}
   19: {8}           59: {17}           107: {28}
   23: {9}           61: {18}           108: {1,1,2,2,2}
		

Crossrefs

These are the Heinz numbers of the partitions counted by A100471.
Partitions with strictly decreasing run-lengths are A100881.
Partitions with weakly decreasing run-lengths are A100882.
Partitions with weakly increasing run-lengths are A100883.
The weakly decreasing version is A242031.
The weakly increasing version is A304678.
The strictly decreasing version is A304686.
Compositions with strictly increasing or decreasing run-lengths are A333191.

Programs

  • Mathematica
    Select[Range[100],Less@@Last/@FactorInteger[#]&]

A332296 Number of narrowly totally normal compositions of n.

Original entry on oeis.org

1, 1, 2, 4, 5, 7, 13, 23, 30, 63, 120, 209, 369, 651, 1198, 2174, 3896, 7023, 12699, 22941, 41565
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2020

Keywords

Comments

A sequence is narrowly totally normal if either it is empty, a singleton (narrow), or it covers an initial interval of positive integers (normal) with narrowly totally normal run-lengths.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(0) = 1 through a(6) = 13 compositions:
  ()  (1)  (2)   (3)    (4)     (5)      (6)
           (11)  (12)   (112)   (122)    (123)
                 (21)   (121)   (212)    (132)
                 (111)  (211)   (221)    (213)
                        (1111)  (1121)   (231)
                                (1211)   (312)
                                (11111)  (321)
                                         (1212)
                                         (1221)
                                         (2112)
                                         (2121)
                                         (11211)
                                         (111111)
For example, starting with the composition (1,1,2,3,1,1) and repeatedly taking run-lengths gives (1,1,2,3,1,1) -> (2,1,1,2) -> (1,2,1) -> (1,1,1) -> (3). The first four are normal and the last is a singleton, so (1,1,2,3,1,1) is counted under a(9).
		

Crossrefs

Normal compositions are A107429.
The wide version is A332279.
The wide recursive version (for partitions) is A332295.
The alternating version is A332296 (this sequence).
The strong version is A332336.
The co-strong version is (also) A332336.

Programs

  • Mathematica
    tinQ[q_]:=Or[Length[q]<=1,And[Union[q]==Range[Max[q]],tinQ[Length/@Split[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],tinQ]],{n,0,10}]

Formula

For n > 1, a(n) = A332279(n) + 1.

A332336 Number of narrowly totally strongly normal compositions of n.

Original entry on oeis.org

1, 1, 2, 4, 4, 4, 10, 10, 13, 24, 55, 78, 117, 206, 353, 698, 1175, 2014, 3539, 6210, 10831
Offset: 0

Views

Author

Gus Wiseman, Feb 15 2020

Keywords

Comments

A sequence is narrowly totally strongly normal if either it is empty, a singleton (narrow), or it covers an initial interval of positive integers (normal) and has weakly decreasing run-lengths (strong) that are themselves a narrowly totally strongly normal sequence.
A composition of n is a finite sequence of positive integers summing to n.

Examples

			The a(1) = 1 through a(8) = 13 compositions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (12)   (112)   (212)    (123)     (1213)     (1232)
             (21)   (121)   (221)    (132)     (1231)     (2123)
             (111)  (1111)  (11111)  (213)     (1312)     (2132)
                                     (231)     (1321)     (2312)
                                     (312)     (2131)     (2321)
                                     (321)     (3121)     (3212)
                                     (1212)    (11221)    (12131)
                                     (2121)    (12121)    (13121)
                                     (111111)  (1111111)  (21212)
                                                          (22112)
                                                          (111221)
                                                          (11111111)
For example, starting with (22112) and repeated taking run-lengths gives (22112) -> (221) -> (21) -> (11) -> (2). The first four are normal with weakly decreasing run-lengths, and the last is a singleton, so (22112) is counted under a(8).
		

Crossrefs

Normal compositions are A107429.
The non-strong version is A332296.
The case of partitions is A332297.
The co-strong version is A332336 (this sequence).
The wide version is A332337.

Programs

  • Mathematica
    tinQ[q_]:=Or[q=={},Length[q]==1,And[Union[q]==Range[Max[q]],GreaterEqual@@Length/@Split[q],tinQ[Length/@Split[q]]]];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],tinQ]],{n,0,10}]

Formula

For n > 1, a(n) = A332337(n) + 1.
Previous Showing 21-30 of 58 results. Next