cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-18 of 18 results.

A015957 Numbers k such that k | 9^k + 1.

Original entry on oeis.org

1, 2, 5, 25, 82, 125, 625, 2525, 3125, 3362, 5905, 12625, 15625, 29525, 63125, 78125, 137842, 147625, 188354, 255025, 315625, 375125, 390625, 738125, 1062625, 1275125, 1578125, 1875625, 1953125, 2982025, 3690625, 5313125, 5651522, 6375625, 6973805
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), A015955 (b=8), this sequence (b=9), A015958 (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=9 of A333429.

Programs

  • Mathematica
    Select[Range[7*10^6],PowerMod[9,#,#]==#-1&] (* Harvey P. Dale, Apr 21 2024 *)

Extensions

More terms from David W. Wilson

A015958 Numbers k such that k | 10^k + 1.

Original entry on oeis.org

1, 11, 121, 253, 1331, 2783, 5819, 11891, 14641, 30613, 35167, 45023, 64009, 96569, 130801, 133837, 161051, 273493, 336743, 386837, 495253, 527197, 558877, 640343, 704099, 808841, 1035529, 1062259, 1438811, 1472207, 1652849, 1771561, 2221087, 3008423, 3045449
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), A015955 (b=8), A015957 (b=9), this sequence (b=10), A015960 (b=11), A015961 (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=10 of A333429.

Programs

  • Mathematica
    Select[Range[15*10^5],PowerMod[10,#,#]==#-1&] (* Harvey P. Dale, Oct 01 2017 *)

Extensions

Corrected by T. D. Noe, Oct 31 2006

A015961 Positive integers k such that k | (12^k + 1).

Original entry on oeis.org

1, 13, 169, 1027, 2197, 13351, 28561, 81133, 173563, 371293, 468481, 685633, 1054729, 2256319, 2890927, 4826809, 6090253, 6409507, 8913229, 13711477, 29332147, 37009999, 37582051, 54165007, 62748517, 79173289, 83323591, 115871977, 178249201, 228383233
Offset: 1

Views

Author

Keywords

Crossrefs

Solutions to b^k == -1 (mod k): A006521 (b=2), A015949 (b=3), A015950 (b=4), A015951 (b=5), A015953 (b=6), A015954 (b=7), A015955 (b=8), A015957 (b=9), A015958 (b=10), A015960 (b=11), this sequence (b=12), A015963 (b=13), A015965 (b=14), A015968 (b=15), A015969 (b=16).
Column k=12 of A333429.

Extensions

More terms from Max Alekseyev, Aug 01 2011
a(30) from Jon E. Schoenfield, Aug 27 2021

A015969 Numbers k that divide 16^k + 1.

Original entry on oeis.org

1, 17, 289, 4913, 83521, 1419857, 6029713, 12027313, 24137569, 85525793, 102505121, 204464321, 410338673, 1453938481, 1742587057, 3475893457, 6975757441, 24716954177, 29623979969, 59090188769, 111612202577, 118587876497, 420188221009, 500540685121, 503607659473
Offset: 1

Views

Author

Keywords

Crossrefs

Extensions

More terms from Max Alekseyev, Oct 02 2010
Missing terms a(10), a(14), a(18), and a(23) from Giovanni Resta, Mar 23 2020

A015968 Positive integers k such that k | (15^k + 1).

Original entry on oeis.org

1, 2, 226, 25538, 2885794, 326094722, 36848703586, 4163903505218, 470521096089634, 53168883858128642, 638026606623638426, 6008083875968536546, 6789793858544278594
Offset: 1

Views

Author

Keywords

Comments

No other terms below 10^19.
Some larger terms: 15878365178317113816706, (15^226+1)/238519527370488646998297200411598927857 (228 digits). - Max Alekseyev, Aug 03 2011

Crossrefs

Column k=15 of A333429.

Extensions

a(6)-a(13) from Max Alekseyev, Oct 02 2010, Aug 03 2011, Sep 17 2017

A333432 A(n,k) is the n-th number m that divides k^m - 1 (or 0 if m does not exist); square array A(n,k), n>=1, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 0, 3, 1, 2, 0, 4, 1, 3, 4, 0, 5, 1, 2, 9, 8, 0, 6, 1, 5, 4, 21, 16, 0, 7, 1, 2, 25, 6, 27, 20, 0, 8, 1, 7, 3, 125, 8, 63, 32, 0, 9, 1, 2, 49, 4, 625, 12, 81, 40, 0, 10, 1, 3, 4, 343, 6, 1555, 16, 147, 64, 0, 11, 1, 2, 9, 8, 889, 8, 3125, 18, 171, 80, 0, 12
Offset: 1

Views

Author

Seiichi Manyama, Mar 21 2020

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,  1,   1,  1,     1,  1,     1,  1, ...
  2, 0,  2,   3,  2,     5,  2,     7,  2, ...
  3, 0,  4,   9,  4,    25,  3,    49,  4, ...
  4, 0,  8,  21,  6,   125,  4,   343,  8, ...
  5, 0, 16,  27,  8,   625,  6,   889, 10, ...
  6, 0, 20,  63, 12,  1555,  8,  2359, 16, ...
  7, 0, 32,  81, 16,  3125,  9,  2401, 20, ...
  8, 0, 40, 147, 18,  7775, 12,  6223, 32, ...
  9, 0, 64, 171, 24, 15625, 16, 16513, 40, ...
		

Crossrefs

Programs

  • Maple
    A:= proc() local h, p; p:= proc() [1] end;
          proc(n, k) if k=2 then `if`(n=1, 1, 0) else
            while nops(p(k)) 1 do od;
              p(k):= [p(k)[], h]
            od; p(k)[n] fi
          end
        end():
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Mar 24 2020
  • Mathematica
    A[n_, k_] := Module[{h, p}, p[_] = {1}; If[k == 2, If[n == 1, 1, 0], While[ Length[p[k]] < n, For[h = 1 + p[k][[-1]], Mod[k^h, h] != 1, h++]; p[k] = Append[p[k], h]]; p[k][[n]]]];
    Table[A[n, 1+d-n], {d, 1, 12}, {n, 1, d}] // Flatten (* Jean-François Alcover, Nov 01 2020, after Alois P. Heinz *)

A092067 a(n) is the smallest number m such that m > 1 and m divides n^m + 1.

Original entry on oeis.org

2, 3, 2, 5, 2, 7, 2, 3, 2, 11, 2, 13, 2, 3, 2, 17, 2, 19, 2, 3, 2, 23, 2, 5, 2, 3, 2, 29, 2, 31, 2, 3, 2, 5, 2, 37, 2, 3, 2, 41, 2, 43, 2, 3, 2, 47, 2, 7, 2, 3, 2, 53, 2, 5, 2, 3, 2, 59, 2, 61, 2, 3, 2, 5, 2, 67, 2, 3, 2, 71, 2, 73, 2, 3, 2, 7, 2, 79, 2, 3, 2, 83, 2, 5, 2, 3, 2, 89, 2, 7, 2, 3, 2, 5, 2, 97
Offset: 1

Views

Author

Farideh Firoozbakht, Mar 28 2004

Keywords

Comments

a(n)=2 iff n is odd. If n is even then every prime factor of n+1 is a solution of the equation (n^x + 1) mod x = 0, and if n is odd, the smallest prime factor of n+1 (2) is a solution of (n^x + 1) mod x = 0, so for each n, a(n) is not greater than the smallest prime factor of n+1.
Conjecture 1: All terms of this sequence are primes. We know if n is odd a(n) is the smallest prime factor of n+1.
Conjecture 2: For each n, a(n) is the smallest prime factor of n+1 or a(n)=A020639(n+1).
From Charlie Neder, Jun 16 2019: (Start)
Theorem: a(n) = A020639(n+1).
Proof: If a(n) is composite (kp, say) then n^(kp) == -1 (mod p), but then n^k is also congruent to -1 (mod p) by Fermat's little theorem, contradicting the assumption that a(n) was minimal. Thus, a(n) must be prime, and using Fermat's little theorem again shows that n^p == -1 (mod p) iff n == -1 (mod p), and A020639(n+1) gives the least p such that this is the case. (End)
The theorem plus the conjecture 2 in A092028 imply a(n) = A092028(n+2). - R. J. Mathar, Mar 21 2023

Examples

			a(6)=7 because 7 divides 6^7 + 1 and there doesn't exist m such that 1 < m < 7 and m divides 6^m + 1.
		

Crossrefs

Row n=2 of A333429.

Programs

  • Mathematica
    a[n_] := (For[k=2, Mod[n^k+1, k]>0, k++ ];k); Table[a[n], {n, 100}]
    snm[n_]:=Module[{m=2},While[PowerMod[n,m,m]!=m-1,m++];m]; Array[snm,100] (* Harvey P. Dale, Jul 31 2021 *)

A333430 a(n) is the n-th number m that divides n^m + 1 (or 0 if m does not exist).

Original entry on oeis.org

1, 3, 10, 125, 21, 1379, 2810, 243, 3125, 30613, 729, 685633, 850, 183
Offset: 1

Views

Author

Alois P. Heinz, Mar 20 2020

Keywords

Comments

a(15) > 10^19.
a(16) = 29623979969.
a(17) = 250.
a(19) = 13915.
a(15) <= 76717223012242243155874. - Jinyuan Wang, Mar 25 2020
From Jon E. Schoenfield, Aug 28 2021: (Start)
a(18) = 16983563041.
Next 20 terms after the first unknown term (a(15)): 29623979969, 250, 16983563041, 13915, 1143, 23426, 5608987, 2187, 75625, 25160213, 2709, 26803, a(28), 729, a(30), 2702258, 6633, 118810, 15625, 6379479. (End)

Crossrefs

Main diagonal of A333429.
Cf. A333433.

Programs

  • PARI
    a(n) = {my(c=0, m=0); while(cJinyuan Wang, Mar 25 2020
    
  • Python
    def a(n):
        if n == 1: return 1
        m = 0
        for c in range(1, n+1):
            m += 1
            while not (pow(n, m, m) + 1)%m == 0: m += 1
        return m
    print([a(n) for n in range(1, 15)]) # Michael S. Branicky, Aug 28 2021

Formula

a(n) = A333429(n,n).
Previous Showing 11-18 of 18 results.