A339562
Squarefree numbers with no prime index dividing all the other prime indices.
Original entry on oeis.org
1, 15, 33, 35, 51, 55, 69, 77, 85, 91, 93, 95, 105, 119, 123, 141, 143, 145, 155, 161, 165, 177, 187, 195, 201, 203, 205, 209, 215, 217, 219, 221, 231, 247, 249, 253, 255, 265, 285, 287, 291, 295, 299, 301, 309, 323, 327, 329, 335, 341, 345, 355, 357, 377, 381
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 141: {2,15} 219: {2,21}
15: {2,3} 143: {5,6} 221: {6,7}
33: {2,5} 145: {3,10} 231: {2,4,5}
35: {3,4} 155: {3,11} 247: {6,8}
51: {2,7} 161: {4,9} 249: {2,23}
55: {3,5} 165: {2,3,5} 253: {5,9}
69: {2,9} 177: {2,17} 255: {2,3,7}
77: {4,5} 187: {5,7} 265: {3,16}
85: {3,7} 195: {2,3,6} 285: {2,3,8}
91: {4,6} 201: {2,19} 287: {4,13}
93: {2,11} 203: {4,10} 291: {2,25}
95: {3,8} 205: {3,13} 295: {3,17}
105: {2,3,4} 209: {5,8} 299: {6,9}
119: {4,7} 215: {3,14} 301: {4,14}
123: {2,13} 217: {4,11} 309: {2,27}
The squarefree complement is
A339563.
These partitions are counted by
A341450.
The not necessarily squarefree version is
A342193.
A000070 counts partitions with a selected part.
A001221 counts distinct prime factors.
Original entry on oeis.org
1, 1, 1, 2, 1, 4, 1, 5, 3, 7, 1, 14, 1, 13, 8, 20, 1, 33, 1, 40, 14, 44, 1, 85, 6, 79, 25, 117, 1, 181, 1, 196, 45, 233, 17, 389, 1, 387, 80, 545, 1, 750, 1, 839, 165, 1004, 1, 1516, 12, 1612, 234, 2040, 1, 2766, 48, 3142, 388, 3720, 1, 5295, 1, 5606, 663, 7038, 83, 9194, 1, 10379, 1005
Offset: 1
From _Gus Wiseman_, Apr 18 2021: (Start)
The a(6) = 4 through a(12) = 13 partitions:
(6) (7) (8) (9) (10) (11) (12)
(3,3) (4,4) (6,3) (5,5) (6,6)
(4,2) (6,2) (3,3,3) (8,2) (8,4)
(2,2,2) (4,2,2) (4,4,2) (9,3)
(2,2,2,2) (6,2,2) (10,2)
(4,2,2,2) (4,4,4)
(2,2,2,2,2) (6,3,3)
(6,4,2)
(8,2,2)
(3,3,3,3)
(4,4,2,2)
(6,2,2,2)
(4,2,2,2,2)
(2,2,2,2,2,2)
(End)
- L. M. Chawla, M. O. Levan and J. E. Maxfield, On a restricted partition function and its tables, J. Natur. Sci. and Math., 12 (1972), 95-101.
The complement (except also without 1's) is counted by
A338470.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.
-
with(combinat): with(numtheory): a := proc(n) c := 0: l := sort(convert(divisors(n), list)): for i from 1 to nops(l)-1 do c := c+numbpart(l[i]-1) od: RETURN(c): end: for j from 2 to 100 do printf(`%d,`,a(j)) od: # James Sellers, Jun 21 2003
# second Maple program:
a:= n-> max(1, add(combinat[numbpart](d-1), d=numtheory[divisors](n) minus {n})):
seq(a(n), n=1..69); # Alois P. Heinz, Feb 15 2023
-
a[n_] := If[n==1, 1, Sum[PartitionsP[d-1], {d, Most@Divisors[n]}]];
Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 15 2023 *)
A130714
Number of partitions of n such that every part divides the largest part and such that the smallest part divides every part.
Original entry on oeis.org
1, 2, 3, 5, 6, 10, 11, 16, 19, 26, 27, 41, 42, 55, 64, 81, 83, 114, 116, 151, 168, 202, 210, 277, 289, 348, 382, 460, 478, 604, 623, 747, 812, 942, 1006, 1223, 1269, 1479, 1605, 1870, 1959, 2329, 2434, 2818, 3056, 3458, 3653, 4280, 4493, 5130, 5507, 6231, 6580
Offset: 1
From _Gus Wiseman_, Apr 18 2021: (Start)
The a(1) = 1 though a(8) = 16 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (41) (33) (61) (44)
(111) (31) (221) (42) (331) (62)
(211) (311) (51) (421) (71)
(1111) (2111) (222) (511) (422)
(11111) (411) (2221) (611)
(2211) (4111) (2222)
(3111) (22111) (3311)
(21111) (31111) (4211)
(111111) (211111) (5111)
(1111111) (22211)
(41111)
(221111)
(311111)
(2111111)
(11111111)
(End)
The second condition alone gives
A083710.
The first condition alone gives
A130689.
The Heinz numbers of these partitions are the complement of
A343343.
The complement is counted by
A343346.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
-
A130714 := proc(n) local gf,den,i,k,j ; gf := 0 ; for i from 0 to n do for j from 1 to n/(1+i) do den := 1 ; for k in numtheory[divisors](i) do den := den*(1-x^(j*k)) ; od ; gf := taylor(gf+x^(j+i*j)/den,x=0,n+1) ; od ; od: coeftayl(gf,x=0,n) ; end: seq(A130714(n),n=1..60) ; # R. J. Mathar, Oct 28 2007
-
Table[If[n==0,1,Length[Select[IntegerPartitions[n],And@@IntegerQ/@(#/Min@@#)&&And@@IntegerQ/@(Max@@#/#)&]]],{n,0,30}] (* Gus Wiseman, Apr 18 2021 *)
A343377
Number of strict integer partitions of n with no part divisible by all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 2, 3, 4, 6, 8, 9, 13, 18, 21, 26, 32, 38, 47, 57, 66, 80, 95, 110, 132, 157, 181, 211, 246, 282, 327, 379, 435, 500, 570, 648, 743, 849, 963, 1094, 1241, 1404, 1592, 1799, 2025, 2282, 2568, 2882, 3239, 3634, 4066, 4554, 5094, 5686, 6346
Offset: 0
The a(5) = 1 through a(12) = 9 partitions:
(3,2) (3,2,1) (4,3) (5,3) (5,4) (6,4) (6,5) (7,5)
(5,2) (4,3,1) (7,2) (7,3) (7,4) (5,4,3)
(5,2,1) (4,3,2) (5,3,2) (8,3) (6,4,2)
(5,3,1) (5,4,1) (9,2) (6,5,1)
(7,2,1) (5,4,2) (7,3,2)
(4,3,2,1) (6,4,1) (7,4,1)
(7,3,1) (8,3,1)
(5,3,2,1) (9,2,1)
(5,4,2,1)
The dual strict complement is
A097986.
The strict complement is counted by
A343347.
The case with smallest part not divisible by all the others is
A343379.
The case with smallest part divisible by all the others is
A343381.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.
Cf.
A083710,
A130689,
A200745,
A264401,
A338470,
A339562,
A343338,
A343342,
A343345,
A343346,
A343382.
-
Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
A343379
Number of strict integer partitions of n with no part dividing or divisible by all the other parts.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 2, 1, 3, 3, 5, 3, 9, 9, 12, 12, 18, 18, 27, 27, 36, 41, 51, 51, 73, 80, 96, 105, 132, 137, 177, 188, 230, 253, 303, 320, 398, 431, 508, 550, 659, 705, 847, 913, 1063, 1165, 1359, 1452, 1716, 1856, 2134, 2329, 2688, 2894, 3345, 3622, 4133
Offset: 0
The a(5) = 1 through a(13) = 9 partitions (empty column indicated by dot):
(3,2) . (4,3) (5,3) (5,4) (6,4) (6,5) (7,5) (7,6)
(5,2) (7,2) (7,3) (7,4) (5,4,3) (8,5)
(4,3,2) (5,3,2) (8,3) (7,3,2) (9,4)
(9,2) (10,3)
(5,4,2) (11,2)
(6,4,3)
(6,5,2)
(7,4,2)
(8,3,2)
The first condition alone gives
A341450.
The second condition alone gives
A343377.
The version for "or" instead of "and" is
A343382.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.
Cf.
A083710,
A097986,
A200745,
A264401,
A338470,
A339562,
A342193,
A343337,
A343341,
A343343,
A343346,
A343347.
-
Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
A343342
Number of integer partitions of n with no part dividing or divisible by all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 0, 3, 2, 5, 5, 12, 7, 22, 20, 32, 34, 60, 54, 98, 93, 145, 159, 237, 229, 361, 384, 529, 574, 810, 840, 1194, 1275, 1703, 1886, 2484, 2660, 3566, 3909, 4987, 5520, 7092, 7737, 9907, 10917, 13603, 15226, 18910, 20801, 25912, 28797
Offset: 0
The a(0) = 1 through a(12) = 7 partitions (empty columns indicated by dots):
() . . . . (32) . (43) (53) (54) (64) (65) (75)
(52) (332) (72) (73) (74) (543)
(322) (432) (433) (83) (552)
(522) (532) (92) (732)
(3222) (3322) (443) (4332)
(533) (5322)
(542) (33222)
(722)
(3332)
(4322)
(5222)
(32222)
The first condition alone gives
A338470.
The second condition alone gives
A343341.
-
Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)&&!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
A343346
Number of integer partitions of n that are empty, have smallest part not dividing all the others, or greatest part not divisible by all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 1, 1, 4, 6, 11, 16, 29, 36, 59, 80, 112, 150, 214, 271, 374, 476, 624, 800, 1045, 1298, 1669, 2088, 2628, 3258, 4087, 5000, 6219, 7602, 9331, 11368, 13877, 16754, 20368, 24536, 29580, 35468, 42624, 50845, 60827, 72357, 86078, 102100, 121101
Offset: 0
The a(0) = 1 through a(10) = 16 partitions (empty columns indicated by dots):
() . . . . (32) (321) (43) (53) (54) (64)
(52) (332) (72) (73)
(322) (431) (432) (433)
(3211) (521) (522) (532)
(3221) (531) (541)
(32111) (3222) (721)
(3321) (3322)
(4311) (4321)
(5211) (5221)
(32211) (5311)
(321111) (32221)
(33211)
(43111)
(52111)
(322111)
(3211111)
The complement is counted by
A130714.
The first condition alone gives
A338470.
The second condition alone gives
A343341.
The "and" instead of "or" version is
A343342.
The Heinz numbers of these partitions are
A343343.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
-
Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)||!And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
A343338
Numbers with no prime index dividing or divisible by all the other prime indices.
Original entry on oeis.org
1, 15, 33, 35, 45, 51, 55, 69, 75, 77, 85, 91, 93, 95, 99, 105, 119, 123, 135, 141, 143, 145, 153, 155, 161, 165, 175, 177, 187, 201, 203, 205, 207, 209, 215, 217, 219, 221, 225, 231, 245, 247, 249, 253, 255, 265, 275, 279, 285, 287, 291, 295, 297, 299, 301
Offset: 1
The sequence of terms together with their prime indices begins:
1: {} 105: {2,3,4} 203: {4,10}
15: {2,3} 119: {4,7} 205: {3,13}
33: {2,5} 123: {2,13} 207: {2,2,9}
35: {3,4} 135: {2,2,2,3} 209: {5,8}
45: {2,2,3} 141: {2,15} 215: {3,14}
51: {2,7} 143: {5,6} 217: {4,11}
55: {3,5} 145: {3,10} 219: {2,21}
69: {2,9} 153: {2,2,7} 221: {6,7}
75: {2,3,3} 155: {3,11} 225: {2,2,3,3}
77: {4,5} 161: {4,9} 231: {2,4,5}
85: {3,7} 165: {2,3,5} 245: {3,4,4}
91: {4,6} 175: {3,3,4} 247: {6,8}
93: {2,11} 177: {2,17} 249: {2,23}
95: {3,8} 187: {5,7} 253: {5,9}
99: {2,2,5} 201: {2,19} 255: {2,3,7}
For example, the prime indices of 975 are {2,3,3,6}, all of which divide 6, but not all of which are multiples of 2, so 975 is not in the sequence.
The first condition alone gives
A342193.
The second condition alone gives
A343337.
The partitions with these Heinz numbers are counted by
A343342.
The opposite version is the complement of
A343343.
A000070 counts partitions with a selected part.
A067824 counts strict chains of divisors starting with n.
A253249 counts strict chains of divisors.
A339564 counts factorizations with a selected factor.
Cf.
A083710,
A130689,
A338470,
A339562,
A341450,
A343341,
A343346,
A343347,
A343348,
A343377,
A343379,
A343382.
A343380
Number of strict integer partitions of n with no part dividing all the others but with a part divisible by all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 1, 0, 1, 1, 4, 0, 1, 0, 2, 0, 4, 0, 3, 1, 2, 2, 5, 0, 5, 3, 4, 1, 9, 1, 5, 2, 4, 5, 11, 1, 6, 4, 11, 3, 13, 5, 10, 4, 11, 8, 14, 3, 10, 6, 9, 3, 15, 6, 14, 10, 18, 8
Offset: 0
The a(11) = 1 through a(29) = 4 partitions (empty columns indicated by dots, A..O = 10..24):
632 . . . . . A52 . C43 . C432 C64 E72 . C643 . K52 . I92
C32 F53 C6432 K54
I32 O32
C632 I632
The first condition alone gives
A341450.
The second condition alone gives
A343347.
The opposite (and dual) version is
A343381.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
A167865 counts strict chains of divisors > 1 summing to n.
A339564 counts factorizations with a selected factor.
-
Table[Length[Select[IntegerPartitions[n],#=={}||UnsameQ@@#&&!And@@IntegerQ/@(#/Min@@#)&&And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
A343344
Number of integer partitions of n that are either empty, or do not have smallest part dividing all the others, but do have greatest part divisible by all the others.
Original entry on oeis.org
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 5, 1, 6, 4, 6, 7, 15, 6, 16, 15, 20, 17, 36, 18, 43, 36, 46, 48, 72, 45, 93, 82, 103, 88, 152, 104, 179, 158, 191, 194, 285, 202, 328, 292, 373, 348, 502, 391, 576, 519, 659, 634, 864, 665
Offset: 0
The a(18) = 1 through a(23) = 15 partitions (A..E = 10..14):
633222 C43 C332 C432 C64 E72
A522 66332 A5222 A552 F53
C322 633332 C3222 C433 I32
66322 6332222 663222 C3322 C443
633322 6333222 663322 C632
6322222 63222222 6333322 66632
63322222 C3332
C4322
663332
A52222
C32222
6333332
6632222
63332222
632222222
The second condition alone gives
A130689.
The first condition alone gives
A338470.
The Heinz numbers of these partitions are 1 and
A343339.
A000070 counts partitions with a selected part.
A006128 counts partitions with a selected position.
A015723 counts strict partitions with a selected part.
-
Table[Length[Select[IntegerPartitions[n],#=={}||!And@@IntegerQ/@(#/Min@@#)&&And@@IntegerQ/@(Max@@#/#)&]],{n,0,30}]
Comments