cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 76 results. Next

A348613 Number of non-alternating ordered factorizations of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 4, 0, 2, 0, 2, 0, 0, 0, 8, 1, 0, 1, 2, 0, 2, 0, 9, 0, 0, 0, 11, 0, 0, 0, 8, 0, 2, 0, 2, 2, 0, 0, 25, 1, 2, 0, 2, 0, 8, 0, 8, 0, 0, 0, 16, 0, 0, 2, 20, 0, 2, 0, 2, 0, 2, 0, 43, 0, 0, 2, 2, 0, 2, 0, 25, 4, 0, 0, 16, 0
Offset: 1

Views

Author

Gus Wiseman, Nov 03 2021

Keywords

Comments

An ordered factorization of n is a finite sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either.

Examples

			The a(n) ordered factorizations for n = 4, 12, 16, 24, 32, 36:
  2*2   2*2*3   4*4       2*2*6     2*2*8       6*6
        3*2*2   2*2*4     2*3*4     2*4*4       2*2*9
                4*2*2     4*3*2     4*4*2       2*3*6
                2*2*2*2   6*2*2     8*2*2       3*3*4
                          2*2*2*3   2*2*2*4     4*3*3
                          2*2*3*2   2*2*4*2     6*3*2
                          2*3*2*2   2*4*2*2     9*2*2
                          3*2*2*2   4*2*2*2     2*2*3*3
                                    2*2*2*2*2   2*3*3*2
                                                3*2*2*3
                                                3*3*2*2
		

Crossrefs

The complementary additive version is A025047, ranked by A345167.
The additive version is A345192, ranked by A345168, without twins A348377.
The complement is counted by A348610.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A345165 counts partitions without an alternating permutation, ranked by A345171.
A345170 counts partitions with an alternating permutation, ranked by A345172.
A348379 counts factorizations w/ an alternating permutation, with twins A347050.
A348380 counts factorizations w/o an alternating permutation, w/o twins A347706.
A348611 counts anti-run ordered factorizations.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[Prepend[#,d]&/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[ordfacs[n],!wigQ[#]&]],{n,100}]

A174726 a(n) = (A002033(n-1) - A008683(n))/2.

Original entry on oeis.org

0, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 1, 1, 1, 4, 1, 4, 1, 4, 1, 1, 1, 10, 1, 1, 2, 4, 1, 7, 1, 8, 1, 1, 1, 13, 1, 1, 1, 10, 1, 7, 1, 4, 4, 1, 1, 24, 1, 4, 1, 4, 1, 10, 1, 10, 1, 1, 1, 22, 1, 1, 4, 16, 1, 7, 1, 4, 1, 7, 1, 38, 1, 1, 4, 4, 1
Offset: 1

Views

Author

Mats Granvik, Mar 28 2010

Keywords

Comments

a(n) is the number of permutation matrices with a negative contribution to the determinant that is the Möbius function. See A174725 for how the determinant is defined. - Mats Granvik, May 26 2017
From Gus Wiseman, Jan 04 2021: (Start)
Also the number of ordered factorizations of n into an odd number of factors > 1. The unordered case is A339890. For example, the a(n) factorizations for n = 8, 12, 24, 30, 32, 36 are:
(8) (12) (24) (30) (32) (36)
(2*2*2) (2*2*3) (2*2*6) (2*3*5) (2*2*8) (2*2*9)
(2*3*2) (2*3*4) (2*5*3) (2*4*4) (2*3*6)
(3*2*2) (2*4*3) (3*2*5) (2*8*2) (2*6*3)
(2*6*2) (3*5*2) (4*2*4) (2*9*2)
(3*2*4) (5*2*3) (4*4*2) (3*2*6)
(3*4*2) (5*3*2) (8*2*2) (3*3*4)
(4*2*3) (2*2*2*2*2) (3*4*3)
(4*3*2) (3*6*2)
(6*2*2) (4*3*3)
(6*2*3)
(6*3*2)
(9*2*2)
(End)

Crossrefs

The even version is A174725.
The unordered case is A339890, with even version A339846.
A001055 counts factorizations, with strict case A045778.
A074206 counts ordered factorizations, with strict case A254578.
A251683 counts ordered factorizations by product and length.
A340102 counts odd-length factorizations into odd factors.
Other cases of odd length:
- A024429 counts set partitions of odd length.
- A027193 counts partitions of odd length.
- A067659 counts strict partitions of odd length.
- A089677 counts ordered set partitions of odd length.
- A166444 counts compositions of odd length.
- A332304 counts strict compositions of odd length.

Programs

  • Mathematica
    ordfacs[n_]:=If[n<=1,{{}},Join@@Table[(Prepend[#1,d]&)/@ordfacs[n/d],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[ordfacs[n],OddQ@*Length]],{n,100}] (* Gus Wiseman, Jan 04 2021 *)

Formula

a(n) = (A002033(n-1) - A008683(n))/2. - Mats Granvik, May 26 2017
For n > 0, a(n) + A174725(n) = A074206(n). - Gus Wiseman, Jan 04 2021

A340654 Number of cross-balanced factorizations of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1, 3, 1, 1, 1, 2, 2, 1, 1, 4, 1, 2, 1, 2, 1, 3, 1, 3, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 2, 2, 1, 1, 1, 4, 1, 1, 1, 3, 1, 1, 1, 3, 1, 3, 1, 2, 1, 1, 1, 5, 1, 2, 2, 5, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be cross-balanced if either (1) it is empty or (2) the maximum image of A001222 over the factors is A001221(n).

Examples

			The cross-balanced factorizations for n = 12, 24, 36, 72, 144, 240:
  2*6   4*6     4*9     2*4*9     4*4*9       8*30
  3*4   2*2*6   6*6     2*6*6     4*6*6       12*20
        2*3*4   2*2*9   3*4*6     2*2*4*9     5*6*8
                2*3*6   2*2*2*9   2*2*6*6     2*4*30
                3*3*4   2*2*3*6   2*3*4*6     2*6*20
                        2*3*3*4   3*3*4*4     2*8*15
                                  2*2*2*2*9   3*4*20
                                  2*2*2*3*6   3*8*10
                                  2*2*3*3*4   4*5*12
                                              2*10*12
                                              2*3*5*8
                                              2*2*2*30
                                              2*2*3*20
                                              2*2*5*12
		

Crossrefs

Positions of terms > 1 are A126706.
Positions of 1's are A303554.
The co-balanced version is A340596.
The version for unlabeled multiset partitions is A340651.
The balanced version is A340653.
The twice-balanced version is A340655.
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
A320655 counts factorizations into semiprimes.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340597 have an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340652 counts unlabeled twice-balanced multiset partitions.
- A340656 have no twice-balanced factorizations.
- A340657 have a twice-balanced factorization.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],#=={}||PrimeNu[n]==Max[PrimeOmega/@#]&]],{n,100}]
  • PARI
    A340654(n, m=n, om=omega(n),mbo=0) = if(1==n,(mbo==om), sumdiv(n, d, if((d>1)&&(d<=m), A340654(n/d, d, om, max(mbo,bigomega(d)))))); \\ Antti Karttunen, Jun 19 2024

Extensions

Data section extended up to a(105) by Antti Karttunen, Jun 19 2024

A340655 Number of twice-balanced factorizations of n.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 2, 0, 0, 1, 1, 0, 0, 0, 2, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 1, 0, 1, 2, 2, 0, 1, 0, 0, 2, 0, 2, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 2, 0, 0, 0, 1, 2, 0, 0, 1, 0, 1, 0, 2, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Jan 15 2021

Keywords

Comments

We define a factorization of n into factors > 1 to be twice-balanced if it is empty or the following are equal:
(1) the number of factors;
(2) the maximum image of A001222 over the factors;
(3) A001221(n).

Examples

			The twice-balanced factorizations for n = 12, 120, 360, 480, 900, 2520:
  2*6   3*5*8    5*8*9     2*8*30    2*6*75    2*2*7*90
  3*4   2*2*30   2*4*45    3*8*20    2*9*50    2*3*5*84
        2*3*20   2*6*30    4*4*30    3*4*75    2*3*7*60
        2*5*12   2*9*20    4*6*20    3*6*50    2*5*7*36
                 3*4*30    4*8*15    4*5*45    3*3*5*56
                 3*6*20    5*8*12    5*6*30    3*3*7*40
                 3*8*15    6*8*10    5*9*20    3*5*7*24
                 4*5*18    2*12*20   2*10*45   2*2*2*315
                 5*6*12    4*10*12   2*15*30   2*2*3*210
                 2*10*18             2*18*25   2*2*5*126
                 2*12*15             3*10*30   2*3*3*140
                 3*10*12             3*12*25
                                     3*15*20
                                     5*10*18
                                     5*12*15
		

Crossrefs

The co-balanced version is A340596.
The version for unlabeled multiset partitions is A340652.
The balanced version is A340653.
The cross-balanced version is A340654.
Positions of zeros are A340656.
Positions of nonzero terms are A340657.
A001055 counts factorizations.
A001221 counts distinct prime factors.
A001222 counts prime factors with multiplicity.
A045778 counts strict factorizations.
A303975 counts distinct prime factors in prime indices.
A316439 counts factorizations by product and length.
Other balance-related sequences:
- A010054 counts balanced strict partitions.
- A047993 counts balanced partitions.
- A098124 counts balanced compositions.
- A106529 lists Heinz numbers of balanced partitions.
- A340597 have an alt-balanced factorization.
- A340598 counts balanced set partitions.
- A340599 counts alt-balanced factorizations.
- A340600 counts unlabeled balanced multiset partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],#=={}||Length[#]==PrimeNu[n]==Max[PrimeOmega/@#]&]],{n,30}]

A347440 Number of factorizations of n with alternating product < 1.

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 2, 0, 1, 1, 1, 0, 2, 0, 2, 1, 1, 0, 4, 0, 1, 1, 2, 0, 3, 0, 3, 1, 1, 1, 3, 0, 1, 1, 4, 0, 3, 0, 2, 2, 1, 0, 6, 0, 2, 1, 2, 0, 4, 1, 4, 1, 1, 0, 6, 0, 1, 2, 3, 1, 3, 0, 2, 1, 3, 0, 8, 0, 1, 2, 2, 1, 3, 0, 6, 1, 1, 0, 6, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Sep 07 2021

Keywords

Comments

All such factorizations have even length and alternating sum < 0, so partitions of this type are counted by A344608.
Also the number of factorizations of n with alternating sum < 0.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).

Examples

			The a(n) factorizations for n = 6, 12, 24, 30, 48, 72, 96, 120:
  2*3  2*6  3*8      5*6   6*8      8*9      2*48         2*60
       3*4  4*6      2*15  2*24     2*36     3*32         3*40
            2*12     3*10  3*16     3*24     4*24         4*30
            2*2*2*3        4*12     4*18     6*16         5*24
                           2*2*2*6  6*12     8*12         6*20
                           2*2*3*4  2*2*2*9  2*2*3*8      8*15
                                    2*2*3*6  2*2*4*6      10*12
                                    2*3*3*4  2*3*4*4      2*2*5*6
                                             2*2*2*12     2*3*4*5
                                             2*2*2*2*2*3  2*2*2*15
                                                          2*2*3*10
		

Crossrefs

Positions of 0's are A000430.
Positions of 2's are A054753.
Positions of non-0's are A080257.
Positions of 1's are A332269.
The weak version (<= 1 instead of < 1) is A339846, ranked by A028982.
The reciprocal version is A339890.
The additive version is A344608, ranked by A119899.
The even-sum additive version is A344743, ranked by A119899 /\ A300061.
Allowing any integer alternating product gives A347437, additive A347446.
The equal version (= 1 instead of < 1) is A347438.
Allowing any integer reciprocal alternating product gives A347439.
The complement (>= 1 instead of < 1) is counted by A347456.
A038548 counts possible reverse-alternating products of factorizations.
A046099 counts factorizations with no alternating permutations.
A071321 gives the alternating sum of prime factors (reverse: A071322).
A236913 counts partitions of 2n with reverse-alternating sum <= 0.
A273013 counts ordered factorizations of n^2 with alternating product 1.
A347460 counts possible alternating products of factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Select[facs[n],altprod[#]<1&]],{n,100}]

Formula

a(2^n) = A344608(n).
a(n) = A339846(n) - A347438(n).

A347460 Number of distinct possible alternating products of factorizations of n.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 3, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 3, 4, 1, 5, 1, 5, 2, 2, 2, 7, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 8, 2, 4, 2, 4, 1, 5, 2, 6, 2, 2, 1, 10, 1, 2, 4, 6, 2, 5, 1, 4, 2, 5, 1, 10, 1, 2, 4, 4, 2, 5, 1, 8, 4, 2, 1, 10, 2, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 06 2021

Keywords

Comments

We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)).
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.

Examples

			The a(n) alternating products for n = 1, 4, 8, 12, 24, 30, 36, 48, 60, 120:
  1  4  8    12   24   30    36   48    60    120
     1  2    3    6    10/3  9    12    15    30
        1/2  3/4  8/3  5/6   4    16/3  20/3  40/3
             1/3  2/3  3/10  1    3     15/4  15/2
                  3/8  2/15  4/9  3/4   12/5  24/5
                  1/6        1/4  1/3   3/5   10/3
                             1/9  3/16  5/12  5/6
                                  1/12  4/15  8/15
                                        3/20  3/10
                                        1/15  5/24
                                              2/15
                                              3/40
                                              1/30
		

Crossrefs

Positions of 1's are 1 and A000040.
Positions of 2's appear to be A001358.
Positions of 3's appear to be A030078.
Dominates A038548, the version for reverse-alternating product.
Counting only integers gives A046951.
The even-length case is A072670.
The version for partitions (not factorizations) is A347461, reverse A347462.
The odd-length case is A347708.
The length-3 case is A347709.
A001055 counts factorizations (strict A045778, ordered A074206).
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A108917 counts knapsack partitions, ranked by A299702.
A276024 counts distinct positive subset-sums of partitions, strict A284640.
A292886 counts knapsack factorizations, by sum A293627.
A299701 counts distinct subset-sums of prime indices, positive A304793.
A301957 counts distinct subset-products of prime indices.
A304792 counts distinct subset-sums of partitions.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}];
    Table[Length[Union[altprod/@facs[n]]],{n,100}]

A348380 Number of factorizations of n without an alternating permutation. Includes all twins (x*x).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 28 2021

Keywords

Comments

First differs from A333487 at a(216) = 4, A333487(216) = 3.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
A sequence is alternating if it is alternately strictly increasing and strictly decreasing, starting with either. For example, the partition (3,2,2,2,1) has no alternating permutations, even though it does have the anti-run permutations (2,3,2,1,2) and (2,1,2,3,2). Alternating permutations of multisets are a generalization of alternating or up-down permutations of {1..n}.

Examples

			The a(n) factorizations for n = 96, 144, 192, 384:
  (2*2*2*12)     (12*12)        (3*4*4*4)        (4*4*4*6)
  (2*2*2*2*6)    (2*2*2*18)     (2*2*2*24)       (2*2*2*48)
  (2*2*2*2*2*3)  (2*2*2*2*9)    (2*2*2*2*12)     (2*2*2*2*24)
                 (2*2*2*2*3*3)  (2*2*2*2*2*6)    (2*2*2*2*3*8)
                                (2*2*2*2*3*4)    (2*2*2*2*4*6)
                                (2*2*2*2*2*2*3)  (2*2*2*2*2*12)
                                                 (2*2*2*2*2*2*6)
                                                 (2*2*2*2*2*3*4)
                                                 (2*2*2*2*2*2*2*3)
		

Crossrefs

The inseparable case is A333487, complement A335434, without twins A348381.
Non-twin partitions of this type are counted by A344654, ranked by A344653.
Twins and partitions not of this type are counted by A344740, ranked by A344742.
Partitions of this type are counted by A345165, ranked by A345171.
Partitions not of this type are counted by A345170, ranked by A345172.
The case without twins is A347706.
The complement is counted by A348379, with twins A347050.
Numbers with a factorization of this type are A348609.
An ordered version is A348613, complement A348610.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A325535 counts inseparable partitions, ranked by A335448.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    wigQ[y_]:=Or[Length[y]==0,Length[Split[y]]==Length[y]&&Length[Split[Sign[Differences[y]]]]==Length[y]-1];
    Table[Length[Select[facs[n],Select[Permutations[#],wigQ]=={}&]],{n,100}]

Formula

a(2^n) = A345165(n).

A273013 Number of different arrangements of nonnegative integers on a pair of n-sided dice such that the dice can add to any integer from 0 to n^2-1.

Original entry on oeis.org

1, 1, 1, 3, 1, 7, 1, 10, 3, 7, 1, 42, 1, 7, 7, 35, 1, 42, 1, 42, 7, 7, 1, 230, 3, 7, 10, 42, 1, 115, 1, 126, 7, 7, 7, 393, 1, 7, 7, 230, 1, 115, 1, 42, 42, 7, 1, 1190, 3, 42, 7, 42, 1, 230, 7, 230, 7, 7, 1, 1158, 1, 7, 42, 462, 7, 115, 1, 42, 7, 115, 1, 3030
Offset: 1

Views

Author

Elliott Line, May 13 2016

Keywords

Comments

The set of b values (see formula), and therefore also a(n), depends only on the prime signature of n. So, for example, a(24) will be identical to a(n) of any other n which is also of the form p_1^3*p_2, (e.g., 40, 54, 56).
The value of b_1 will always be 1. When n is prime, the only nonzero b will be b_1, so therefore a(n) will be 1.
In any arrangement, both dice will have a 0, and one will have a 1 (here called the lead die). To determine any one of the actual arrangements to numbers on the dice, select one of the permutations of divisors (for the lead die), then select another permutation that is either the same length as that of the lead die, or one less. For example, if n = 12, we might select 2*3*2 for the lead die, and 3*4 for the second die. These numbers effectively tell you when to "switch track" when numbering the dice, and will uniquely result in the numbering: (0,1,6,7,12,13,72,73,78,79,84,85; 0,2,4,18,20,22,36,38,40,54,56,58).
a(n) is the number of (unordered) pairs of polynomials c(x) = x^c_1 + x^c_2 + ... + x^c_n, d(x) = x^d_1 + x^d_2 + ... + x^d_n with nonnegative integer exponents such that c(x)*d(x) = (x^(n^2)-1)/(x-1). - Alois P. Heinz, May 13 2016
a(n) is also the number of principal reversible squares of order n. - S. Harry White, May 19 2018
From Gus Wiseman, Oct 29 2021: (Start)
Also the number of ordered factorizations of n^2 with alternating product 1. This follows from the author's formula. Taking n instead of n^2 gives a(sqrt(n)) if n is a perfect square, otherwise 0. Here, an ordered factorization of n is a sequence of positive integers > 1 with product n, and the alternating product of a sequence (y_1,...,y_k) is Product_i y_i^((-1)^(i-1)). For example, the a(1) = 1 through a(9) = 3 factorizations are:
() (22) (33) (44) (55) (66) (77) (88) (99)
(242) (263) (284) (393)
(2222) (362) (482) (3333)
(2233) (2244)
(2332) (2442)
(3223) (4224)
(3322) (4422)
(22242)
(24222)
(222222)
The even-length case is A347464.
(End)

Examples

			When n = 4, a(n) = 3; the three arrangements are (0,1,2,3; 0,4,8,12), (0,1,4,5; 0,2,8,10), (0,1,8,9; 0,2,4,6).
When n = 5, a(n) = 1; the sole arrangement is (0,1,2,3,4; 0,5,10,15,20).
		

Crossrefs

Positions of 1's are 1 and A000040.
A000290 lists squares, complement A000037.
A001055 counts factorizations, ordered A074206.
A119620 counts partitions with alternating product 1, ranked by A028982.
A339846 counts even-length factorizations, ordered A174725.
A339890 counts odd-length factorizations, ordered A174726.
A347438 counts factorizations with alternating product 1.
A347460 counts possible alternating products of factorizations.
A347463 counts ordered factorizations with integer alternating product.
A347466 counts factorizations of n^2.

Programs

  • Mathematica
    facs[n_] := If[n <= 1, {{}}, Join@@Table[Map[Prepend[#, d]&, Select[facs[n/d], Min@@# >= d&]], {d, Rest[Divisors[n]]}]];
    altprod[q_] := Product[q[[i]]^(-1)^(i-1), {i, Length[q]}];
    Table[Length[Select[Join@@Permutations/@facs[n^2], altprod[#] == 1&]],{n, 30}]
    (* Gus Wiseman, Oct 29 2021 *)
    (* or *)
    ofc[n_,k_] := If[k > PrimeOmega[n], 0, If[k == 0 && n == 1, 1, Sum[ofc[n/d, k-1],{d, Rest[Divisors[n]]}]]];
    Table[If[n == 1, 1, Sum[ofc[n, x]^2 + ofc[n, x]*ofc[n, x+1], {x, n}]],{n, 30}]
    (* Gus Wiseman, Oct 29 2021, based on author's formula *)
  • PARI
    A273013aux(n, k=0, t=1) = if(1==n, (1==t), my(s=0); fordiv(n, d, if((d>1), s += A273013aux(n/d, 1-k, t*(d^((-1)^k))))); (s));
    A273013(n) = A273013aux(n^2); \\ Antti Karttunen, Oct 30 2021
    
  • SageMath
    @cached_function
    def r(m,n):
        if n==1:
            return(1)
        divList = divisors(m)[:-1]
        return(sum(r(n,d) for d in divList))
    def A273013(n):
        return(r(n,n)) # William P. Orrick, Feb 19 2023

Formula

a(n) = b_1^2 + b_2^2 + b_3^2 + ... + b_1*b_2 + b_2*b_3 + b_3*b_4 + ..., where b_k is the number of different permutations of k divisors of n to achieve a product of n. For example, for n=24, b_3 = 9 (6 permutations of 2*3*4 and 3 permutations of 2*2*6).
a(n) = r(n,n) where r(m,1) = 1 and r(m,n) = Sum_{d|m,dWilliam P. Orrick, Feb 19 2023

A347050 Number of factorizations of n that are a twin (x*x) or have an alternating permutation.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 4, 1, 2, 2, 4, 1, 4, 1, 4, 2, 2, 1, 6, 2, 2, 2, 4, 1, 5, 1, 5, 2, 2, 2, 9, 1, 2, 2, 6, 1, 5, 1, 4, 4, 2, 1, 10, 2, 4, 2, 4, 1, 6, 2, 6, 2, 2, 1, 11, 1, 2, 4, 7, 2, 5, 1, 4, 2, 5, 1, 15, 1, 2, 4, 4, 2, 5, 1, 10, 4, 2, 1, 11, 2
Offset: 1

Views

Author

Gus Wiseman, Oct 15 2021

Keywords

Comments

First differs from A348383 at a(216) = 27, A348383(216) = 28.
A factorization of n is a weakly increasing sequence of positive integers > 1 with product n.
These permutations are ordered factorizations of n with no adjacent triples (..., x, y, z, ...) where x <= y <= z or x >= y >= z.
The version without twins for n > 0 is a(n) + 1 if n is a perfect square; otherwise a(n).

Examples

			The factorizations for n = 4, 12, 24, 30, 36, 48, 60, 64, 72:
  4    12     24     30     36       48       60       64       72
  2*2  2*6    3*8    5*6    4*9      6*8      2*30     8*8      8*9
       3*4    4*6    2*15   6*6      2*24     3*20     2*32     2*36
       2*2*3  2*12   3*10   2*18     3*16     4*15     4*16     3*24
              2*2*6  2*3*5  3*12     4*12     5*12     2*4*8    4*18
              2*3*4         2*2*9    2*3*8    6*10     2*2*16   6*12
                            2*3*6    2*4*6    2*5*6    2*2*4*4  2*4*9
                            3*3*4    3*4*4    3*4*5             2*6*6
                            2*2*3*3  2*2*12   2*2*15            3*3*8
                                     2*2*3*4  2*3*10            3*4*6
                                              2*2*3*5           2*2*18
                                                                2*3*12
                                                                2*2*3*6
                                                                2*3*3*4
                                                                2*2*2*3*3
The a(270) = 19 factorizations:
  (2*3*5*9)   (5*6*9)   (3*90)   (270)
  (3*3*5*6)   (2*3*45)  (5*54)
  (2*3*3*15)  (2*5*27)  (6*45)
              (2*9*15)  (9*30)
              (3*3*30)  (10*27)
              (3*5*18)  (15*18)
              (3*6*15)  (2*135)
              (3*9*10)
Note that (2*3*3*3*5) is separable but has no alternating permutations.
		

Crossrefs

Partitions not of this type are counted by A344654, ranked by A344653.
Partitions of this type are counted by A344740, ranked by A344742.
The complement is counted by A347706, without twins A348380.
The case without twins is A348379.
Dominates A348383, the separable case.
A001055 counts factorizations, strict A045778, ordered A074206.
A001250 counts alternating permutations.
A008480 counts permutations of prime indices, strict A335489.
A025047 counts alternating or wiggly compositions, ranked by A345167.
A056239 adds up prime indices, row sums of A112798.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A335452 counts anti-run permutations of prime indices, complement A336107.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.

Programs

  • Mathematica
    facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]];
    Table[Length[Select[facs[n],Function[f,Select[Permutations[f],!MatchQ[#,{_,x_,y_,z_,_}/;x<=y<=z||x>=y>=z]&]!={}]]],{n,100}]

Formula

For n > 1, a(n) = A335434(n) + A010052(n).

A340602 Heinz numbers of integer partitions of even rank.

Original entry on oeis.org

1, 2, 5, 6, 8, 9, 11, 14, 17, 20, 21, 23, 24, 26, 30, 31, 32, 35, 36, 38, 39, 41, 44, 45, 47, 49, 50, 54, 56, 57, 58, 59, 65, 66, 67, 68, 73, 74, 75, 80, 81, 83, 84, 86, 87, 91, 92, 95, 96, 97, 99, 102, 103, 104, 106, 109, 110, 111, 120, 122, 124, 125, 126, 127
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2021

Keywords

Comments

The Dyson rank of a nonempty partition is its maximum part minus its length. The rank of an empty partition is 0.
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The sequence of partitions with their Heinz numbers begins:
     1: ()           31: (11)           58: (10,1)
     2: (1)          32: (1,1,1,1,1)    59: (17)
     5: (3)          35: (4,3)          65: (6,3)
     6: (2,1)        36: (2,2,1,1)      66: (5,2,1)
     8: (1,1,1)      38: (8,1)          67: (19)
     9: (2,2)        39: (6,2)          68: (7,1,1)
    11: (5)          41: (13)           73: (21)
    14: (4,1)        44: (5,1,1)        74: (12,1)
    17: (7)          45: (3,2,2)        75: (3,3,2)
    20: (3,1,1)      47: (15)           80: (3,1,1,1,1)
    21: (4,2)        49: (4,4)          81: (2,2,2,2)
    23: (9)          50: (3,3,1)        83: (23)
    24: (2,1,1,1)    54: (2,2,2,1)      84: (4,2,1,1)
    26: (6,1)        56: (4,1,1,1)      86: (14,1)
    30: (3,2,1)      57: (8,2)          87: (10,2)
		

Crossrefs

Taking only length gives A001222.
Taking only maximum part gives A061395.
These partitions are counted by A340601.
The complement is A340603.
The case of positive rank is A340605.
- Rank -
A047993 counts partitions of rank 0 (A106529).
A101198 counts partitions of rank 1 (A325233).
A101707 counts partitions of odd positive rank (A340604).
A101708 counts partitions of even positive rank (A340605).
A257541 gives the rank of the partition with Heinz number n.
A324516 counts partitions with rank = maximum minus minimum part (A324515).
A340653 counts factorizations of rank 0.
A340692 counts partitions of odd rank (A340603).
- Even -
A024430 counts set partitions of even length.
A027187 counts partitions of even length (A028260).
A027187 (also) counts partitions of even maximum (A244990).
A034008 counts compositions of even length.
A035363 counts partitions into even parts (A066207).
A052841 counts ordered set partitions of even length.
A058696 counts partitions of even numbers (A300061).
A067661 counts strict partitions of even length (A030229).
A236913 counts even-length partitions of even numbers (A340784).
A339846 counts factorizations of even length.

Programs

  • Mathematica
    Select[Range[100],EvenQ[PrimePi[FactorInteger[#][[-1,1]]]-PrimeOmega[#]]&]

Formula

Either n = 1 or A061395(n) - A001222(n) is even.
Previous Showing 21-30 of 76 results. Next