cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 21 results. Next

A346701 Heinz number of the odd bisection (odd-indexed parts) of the integer partition with Heinz number n.

Original entry on oeis.org

1, 2, 3, 2, 5, 3, 7, 4, 3, 5, 11, 6, 13, 7, 5, 4, 17, 6, 19, 10, 7, 11, 23, 6, 5, 13, 9, 14, 29, 10, 31, 8, 11, 17, 7, 6, 37, 19, 13, 10, 41, 14, 43, 22, 15, 23, 47, 12, 7, 10, 17, 26, 53, 9, 11, 14, 19, 29, 59, 10, 61, 31, 21, 8, 13, 22, 67, 34, 23, 14, 71
Offset: 1

Views

Author

Gus Wiseman, Aug 03 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.

Examples

			The partition (2,2,2,1,1) has Heinz number 108 and odd bisection (2,2,1) with Heinz number 18, so a(108) = 18.
The partitions (3,2,2,1,1), (3,2,2,2,1), (3,3,2,1,1) have Heinz numbers 180, 270, 300 and all have odd bisection (3,2,1) with Heinz number 30, so a(180) = a(270) = a(300) = 30.
		

Crossrefs

Positions of last appearances are A000290 without the first term 0.
Positions of primes are A037143 (complement: A033942).
The even version is A329888.
Positions of first appearances are A342768.
The sum of prime indices of a(n) is A346699(n), non-reverse: A346697.
The non-reverse version is A346703.
The even non-reverse version is A346704.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A056239 adds up prime indices, row sums of A112798.
A103919 counts partitions by sum and alternating sum, reverse A344612.
A209281 (shifted) adds up the odd bisection of standard compositions.
A316524 gives the alternating sum of prime indices, reverse A344616.
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344606 counts alternating permutations of prime indices.
A344617 gives the sign of the alternating sum of prime indices.
A346700 gives the sum of the even bisection of reversed prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[Times@@Prime/@First/@Partition[Append[Reverse[primeMS[n]],0],2],{n,100}]

Formula

a(n) * A329888(n) = n.
A056239(a(n)) = A346699(n).

A372588 Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is odd.

Original entry on oeis.org

2, 6, 7, 8, 10, 11, 15, 18, 19, 21, 24, 26, 27, 28, 29, 32, 33, 34, 40, 41, 44, 45, 46, 47, 50, 51, 55, 59, 60, 62, 65, 70, 71, 72, 74, 76, 78, 79, 81, 84, 86, 87, 89, 91, 95, 96, 98, 101, 104, 105, 106, 107, 108, 111, 112, 113, 114, 116, 117, 122, 126, 128
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The even version is A372589.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
        {2}   2  (1)
      {2,3}   6  (2,1)
    {1,2,3}   7  (4)
        {4}   8  (1,1,1)
      {2,4}  10  (3,1)
    {1,2,4}  11  (5)
  {1,2,3,4}  15  (3,2)
      {2,5}  18  (2,2,1)
    {1,2,5}  19  (8)
    {1,3,5}  21  (4,2)
      {4,5}  24  (2,1,1,1)
    {2,4,5}  26  (6,1)
  {1,2,4,5}  27  (2,2,2)
    {3,4,5}  28  (4,1,1)
  {1,3,4,5}  29  (10)
        {6}  32  (1,1,1,1,1)
      {1,6}  33  (5,2)
      {2,6}  34  (7,1)
      {4,6}  40  (3,1,1,1)
    {1,4,6}  41  (13)
    {3,4,6}  44  (5,1,1)
  {1,3,4,6}  45  (3,2,2)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372586.
For minimum (A372437) we have A372439, complement A372440.
For length (A372441, zeros A071814) we have A372590, complement A372591.
Positions of odd terms in A372442, zeros A372436.
The complement is A372589.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[2,100],OddQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]

Formula

Numbers k such that A070939(k) + A061395(k) is odd.

A372586 Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is odd.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 12, 15, 16, 17, 20, 21, 29, 32, 36, 42, 43, 45, 46, 47, 48, 51, 53, 54, 55, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 73, 78, 79, 80, 81, 84, 89, 91, 93, 94, 95, 97, 99, 101, 105, 110, 111, 113, 114, 115, 116, 118, 119, 121, 122, 125, 127
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The even version is A372587.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
            {1}   1  ()
            {2}   2  (1)
          {1,2}   3  (2)
            {3}   4  (1,1)
          {1,3}   5  (3)
            {4}   8  (1,1,1)
          {1,4}   9  (2,2)
          {3,4}  12  (2,1,1)
      {1,2,3,4}  15  (3,2)
            {5}  16  (1,1,1,1)
          {1,5}  17  (7)
          {3,5}  20  (3,1,1)
        {1,3,5}  21  (4,2)
      {1,3,4,5}  29  (10)
            {6}  32  (1,1,1,1,1)
          {3,6}  36  (2,2,1,1)
        {2,4,6}  42  (4,2,1)
      {1,2,4,6}  43  (14)
      {1,3,4,6}  45  (3,2,2)
      {2,3,4,6}  46  (9,1)
    {1,2,3,4,6}  47  (15)
          {5,6}  48  (2,1,1,1,1)
		

Crossrefs

Positions of odd terms in A372428, zeros A372427.
For minimum (A372437) we have A372439, complement A372440.
For length (A372441, zeros A071814) we have A372590, complement A372591.
For maximum (A372442, zeros A372436) we have A372588, complement A372589.
The complement is A372587.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],OddQ[Total[bix[#]]+Total[prix[#]]]&]

Formula

Numbers k such that A029931(k) + A056239(k) is odd.

A372589 Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is even.

Original entry on oeis.org

3, 4, 5, 9, 12, 13, 14, 16, 17, 20, 22, 23, 25, 30, 31, 35, 36, 37, 38, 39, 42, 43, 48, 49, 52, 53, 54, 56, 57, 58, 61, 63, 64, 66, 67, 68, 69, 73, 75, 77, 80, 82, 83, 85, 88, 90, 92, 93, 94, 97, 99, 100, 102, 103, 109, 110, 115, 118, 119, 120, 121, 123, 124
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The odd version is A372588.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
        {1,2}   3  (2)
          {3}   4  (1,1)
        {1,3}   5  (3)
        {1,4}   9  (2,2)
        {3,4}  12  (2,1,1)
      {1,3,4}  13  (6)
      {2,3,4}  14  (4,1)
          {5}  16  (1,1,1,1)
        {1,5}  17  (7)
        {3,5}  20  (3,1,1)
      {2,3,5}  22  (5,1)
    {1,2,3,5}  23  (9)
      {1,4,5}  25  (3,3)
    {2,3,4,5}  30  (3,2,1)
  {1,2,3,4,5}  31  (11)
      {1,2,6}  35  (4,3)
        {3,6}  36  (2,2,1,1)
      {1,3,6}  37  (12)
      {2,3,6}  38  (8,1)
    {1,2,3,6}  39  (6,2)
      {2,4,6}  42  (4,2,1)
    {1,2,4,6}  43  (14)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372587, complement A372586.
For minimum (A372437) we have A372440, complement A372439.
For length (A372441, zeros A071814) we have A372591, complement A372590.
Positions of even terms in A372442, zeros A372436.
The complement is A372588.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031215 lists even-indexed primes, odd A031368.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[2,100],EvenQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]

Formula

Numbers k such that A070939(k) + A061395(k) is even.

A372590 Numbers whose binary weight (A000120) plus bigomega (A001222) is odd.

Original entry on oeis.org

1, 3, 4, 5, 12, 14, 16, 17, 18, 20, 21, 22, 23, 25, 26, 27, 29, 30, 35, 38, 43, 45, 48, 49, 53, 55, 56, 62, 63, 64, 66, 68, 69, 71, 72, 74, 75, 78, 80, 81, 82, 83, 84, 87, 88, 89, 91, 92, 93, 94, 99, 100, 101, 102, 104, 105, 108, 113, 114, 115, 116, 118, 120
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

The even version is A372591.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
        {1}   1  ()
      {1,2}   3  (2)
        {3}   4  (1,1)
      {1,3}   5  (3)
      {3,4}  12  (2,1,1)
    {2,3,4}  14  (4,1)
        {5}  16  (1,1,1,1)
      {1,5}  17  (7)
      {2,5}  18  (2,2,1)
      {3,5}  20  (3,1,1)
    {1,3,5}  21  (4,2)
    {2,3,5}  22  (5,1)
  {1,2,3,5}  23  (9)
    {1,4,5}  25  (3,3)
    {2,4,5}  26  (6,1)
  {1,2,4,5}  27  (2,2,2)
  {1,3,4,5}  29  (10)
  {2,3,4,5}  30  (3,2,1)
    {1,2,6}  35  (4,3)
    {2,3,6}  38  (8,1)
  {1,2,4,6}  43  (14)
  {1,3,4,6}  45  (3,2,2)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372586, complement A372587.
For minimum (A372437) we have A372439, complement A372440.
Positions of odd terms in A372441, zeros A071814.
For maximum (A372442, zeros A372436) we have A372588, complement A372589.
The complement is A372591.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[100],OddQ[DigitCount[#,2,1]+PrimeOmega[#]]&]

A345960 Numbers whose prime indices have alternating sum 2.

Original entry on oeis.org

3, 12, 27, 30, 48, 70, 75, 108, 120, 147, 154, 192, 243, 270, 280, 286, 300, 363, 432, 442, 480, 507, 588, 616, 630, 646, 675, 750, 768, 867, 874, 972, 1080, 1083, 1120, 1144, 1200, 1323, 1334, 1386, 1452, 1470, 1587, 1728, 1750, 1768, 1798, 1875, 1920, 2028
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. Of course, the alternating sum of prime indices is also the reverse-alternating sum of reversed prime indices.
Also numbers with odd Omega (A001222) and exactly two odd conjugate prime indices. The version for even Omega is A345962, and the union is A345961. Conjugate prime indices are listed by A321650 and ranked by A122111.

Examples

			The initial terms and their prime indices:
    3: {2}
   12: {1,1,2}
   27: {2,2,2}
   30: {1,2,3}
   48: {1,1,1,1,2}
   70: {1,3,4}
   75: {2,3,3}
  108: {1,1,2,2,2}
  120: {1,1,1,2,3}
  147: {2,4,4}
  154: {1,4,5}
  192: {1,1,1,1,1,1,2}
  243: {2,2,2,2,2}
  270: {1,2,2,2,3}
  280: {1,1,1,3,4}
  286: {1,5,6}
  300: {1,1,2,3,3}
		

Crossrefs

These partitions are counted by A000097.
The k = 0 version is A000290, counted by A000041.
The k = 1 version is A001105 (reverse: A345958).
The k > 0 version is A026424.
These multisets are counted by A120452.
These are the positions of 2's in A316524 (reverse: A344616).
The k = -1 version is A345959.
The version for reversed alternating sum is A345961.
The k = -2 version is A345962.
A000984/A345909/A345911 count/rank compositions with alternating sum 1.
A002054/A345924/A345923 count/rank compositions with alternating sum -2.
A056239 adds up prime indices, row sums of A112798.
A088218/A345925/A345922 count/rank compositions with alternating sum 2.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 and A325535 count separable and inseparable partitions.
A344606 counts alternating permutations of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[primeMS[#]]==2&]

A346635 Numbers whose division (or multiplication) by their greatest prime factor yields a perfect square. Numbers k such that k*A006530(k) is a perfect square.

Original entry on oeis.org

1, 2, 3, 5, 7, 8, 11, 12, 13, 17, 19, 20, 23, 27, 28, 29, 31, 32, 37, 41, 43, 44, 45, 47, 48, 52, 53, 59, 61, 63, 67, 68, 71, 73, 76, 79, 80, 83, 89, 92, 97, 99, 101, 103, 107, 108, 109, 112, 113, 116, 117, 124, 125, 127, 128, 131, 137, 139, 148, 149, 151, 153
Offset: 1

Views

Author

Gus Wiseman, Aug 10 2021

Keywords

Comments

This is the sorted version of A342768(n) = position of first appearance of n in A346701 (but A346703 works also).

Examples

			The terms together with their prime indices begin:
     1: {}          31: {11}            71: {20}
     2: {1}         32: {1,1,1,1,1}     73: {21}
     3: {2}         37: {12}            76: {1,1,8}
     5: {3}         41: {13}            79: {22}
     7: {4}         43: {14}            80: {1,1,1,1,3}
     8: {1,1,1}     44: {1,1,5}         83: {23}
    11: {5}         45: {2,2,3}         89: {24}
    12: {1,1,2}     47: {15}            92: {1,1,9}
    13: {6}         48: {1,1,1,1,2}     97: {25}
    17: {7}         52: {1,1,6}         99: {2,2,5}
    19: {8}         53: {16}           101: {26}
    20: {1,1,3}     59: {17}           103: {27}
    23: {9}         61: {18}           107: {28}
    27: {2,2,2}     63: {2,2,4}        108: {1,1,2,2,2}
    28: {1,1,4}     67: {19}           109: {29}
    29: {10}        68: {1,1,7}        112: {1,1,1,1,4}
		

Crossrefs

Removing 1 gives a subset of A026424.
The unsorted even version is A129597.
The unsorted version is A342768(n) = A342767(n,n).
Except the first term, the even version is 2*a(n).
A000290 lists squares.
A001221 counts distinct prime factors.
A001222 counts all prime factors.
A006530 gives the greatest prime factor.
A061395 gives the greatest prime index.
A027193 counts partitions of odd length.
A056239 adds up prime indices, row sums of A112798.
A209281 = odd bisection sum of standard compositions (even: A346633).
A316524 = alternating sum of prime indices (sign: A344617, rev.: A344616).
A325534 counts separable partitions, ranked by A335433.
A325535 counts inseparable partitions, ranked by A335448.
A344606 counts alternating permutations of prime indices.
A346697 = odd bisection sum of prime indices (weights of A346703).
A346699 = odd bisection sum of reversed prime indices (weights of A346701).

Programs

  • Maple
    filter:= proc(n) issqr(n/max(numtheory:-factorset(n))) end proc:
    filter(1):= true:
    select(filter, [$1..200]); # Robert Israel, Nov 26 2022
  • Mathematica
    sqrQ[n_]:=IntegerQ[Sqrt[n]];
    Select[Range[100],sqrQ[#*FactorInteger[#][[-1,1]]]&]
  • PARI
    isok(m) = (m==1) || issquare(m/vecmax(factor(m)[,1])); \\ Michel Marcus, Aug 12 2021

Formula

a(n) = A129597(n)/2 for n > 1.

A372587 Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is even.

Original entry on oeis.org

6, 7, 10, 11, 13, 14, 18, 19, 22, 23, 24, 25, 26, 27, 28, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 44, 49, 50, 52, 56, 57, 58, 62, 69, 70, 72, 74, 75, 76, 77, 82, 83, 85, 86, 87, 88, 90, 92, 96, 98, 100, 102, 103, 104, 106, 107, 108, 109, 112, 117, 120, 123
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The odd version is A372586.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
            {2,3}   6  (2,1)
          {1,2,3}   7  (4)
            {2,4}  10  (3,1)
          {1,2,4}  11  (5)
          {1,3,4}  13  (6)
          {2,3,4}  14  (4,1)
            {2,5}  18  (2,2,1)
          {1,2,5}  19  (8)
          {2,3,5}  22  (5,1)
        {1,2,3,5}  23  (9)
            {4,5}  24  (2,1,1,1)
          {1,4,5}  25  (3,3)
          {2,4,5}  26  (6,1)
        {1,2,4,5}  27  (2,2,2)
          {3,4,5}  28  (4,1,1)
        {2,3,4,5}  30  (3,2,1)
      {1,2,3,4,5}  31  (11)
            {1,6}  33  (5,2)
            {2,6}  34  (7,1)
          {1,2,6}  35  (4,3)
          {1,3,6}  37  (12)
          {2,3,6}  38  (8,1)
		

Crossrefs

Positions of even terms in A372428, zeros A372427.
For minimum (A372437) we have A372440, complement A372439.
For length (A372441, zeros A071814) we have A372591, complement A372590.
For maximum (A372442, zeros A372436) we have A372589, complement A372588.
The complement is A372586.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],EvenQ[Total[bix[#]]+Total[prix[#]]]&]

Formula

Numbers k such that A029931(k) + A056239(k) is even.

A345962 Numbers whose prime indices have alternating sum -2.

Original entry on oeis.org

10, 21, 40, 55, 84, 90, 91, 160, 187, 189, 210, 220, 247, 250, 336, 360, 364, 391, 462, 490, 495, 525, 551, 640, 713, 748, 756, 810, 819, 840, 858, 880, 988, 1000, 1029, 1073, 1155, 1210, 1271, 1326, 1344, 1375, 1440, 1456, 1564, 1591, 1683, 1690, 1701, 1848
Offset: 1

Views

Author

Gus Wiseman, Jul 12 2021

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. Of course, the alternating sum of prime indices is also the reverse-alternating sum of reversed prime indices.
Also numbers with even Omega (A001222) and exactly two odd conjugate prime indices. The case of odd Omega is A345960, and the union is A345961.

Examples

			The initial terms and their prime indices:
   10: {1,3}
   21: {2,4}
   40: {1,1,1,3}
   55: {3,5}
   84: {1,1,2,4}
   90: {1,2,2,3}
   91: {4,6}
  160: {1,1,1,1,1,3}
  187: {5,7}
  189: {2,2,2,4}
  210: {1,2,3,4}
  220: {1,1,3,5}
  247: {6,8}
  250: {1,3,3,3}
  336: {1,1,1,1,2,4}
  360: {1,1,1,2,2,3}
		

Crossrefs

Below we use k to indicate alternating sum.
The k = 0 version is A000290, counted by A000041.
The k = 1 version is A001105 (reverse: A345958).
The k > 0 version is A026424.
These are the positions of -2's in A316524.
These multisets are counted by A344741 (positive 2: A120452).
The k = -1 version is A345959.
The k = 2 version is A345960, counted by A000097.
A002054/A345924/A345923 count/rank compositions with alternating sum -2.
A056239 adds up prime indices, row sums of A112798.
A088218/A345925/A345922 count/rank compositions with alternating sum 2.
A097805 counts compositions by alternating (or reverse-alternating) sum.
A103919 counts partitions by sum and alternating sum (reverse: A344612).
A325534 and A325535 count separable and inseparable partitions.
A344606 counts alternating permutations of prime indices.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],ats[primeMS[#]]==-2&]

A341447 Heinz numbers of integer partitions whose only even part is the smallest.

Original entry on oeis.org

3, 7, 13, 15, 19, 29, 33, 37, 43, 51, 53, 61, 69, 71, 75, 77, 79, 89, 93, 101, 107, 113, 119, 123, 131, 139, 141, 151, 161, 163, 165, 173, 177, 181, 193, 199, 201, 217, 219, 221, 223, 229, 239, 249, 251, 255, 263, 271, 281, 287, 291, 293, 299, 309, 311, 317
Offset: 1

Views

Author

Gus Wiseman, Feb 13 2021

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose only even prime index (counting multiplicity) is the smallest.

Examples

			The sequence of partitions together with their Heinz numbers begins:
      3: (2)         77: (5,4)     165: (5,3,2)
      7: (4)         79: (22)      173: (40)
     13: (6)         89: (24)      177: (17,2)
     15: (3,2)       93: (11,2)    181: (42)
     19: (8)        101: (26)      193: (44)
     29: (10)       107: (28)      199: (46)
     33: (5,2)      113: (30)      201: (19,2)
     37: (12)       119: (7,4)     217: (11,4)
     43: (14)       123: (13,2)    219: (21,2)
     51: (7,2)      131: (32)      221: (7,6)
     53: (16)       139: (34)      223: (48)
     61: (18)       141: (15,2)    229: (50)
     69: (9,2)      151: (36)      239: (52)
     71: (20)       161: (9,4)     249: (23,2)
     75: (3,3,2)    163: (38)      251: (54)
		

Crossrefs

These partitions are counted by A087897, shifted left once.
Terms of A340933 can be factored into elements of this sequence.
The odd version is A341446.
A000009 counts partitions into odd parts, ranked by A066208.
A001222 counts prime factors.
A005843 lists even numbers.
A026804 counts partitions whose least part is odd, ranked by A340932.
A026805 counts partitions whose least part is even, ranked by A340933.
A027187 counts partitions with even length/max, ranked by A028260/A244990.
A031215 lists even-indexed primes.
A055396 selects least prime index.
A056239 adds up prime indices.
A058696 counts partitions of even numbers, ranked by A300061.
A061395 selects greatest prime index.
A066207 lists numbers with all even prime indices.
A112798 lists the prime indices of each positive integer.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],EvenQ[First[primeMS[#]]]&&And@@OddQ[Rest[primeMS[#]]]&]
Previous Showing 11-20 of 21 results. Next