cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A005820 3-perfect (triply perfect, tri-perfect, triperfect or sous-double) numbers: numbers such that the sum of the divisors of n is 3n.

Original entry on oeis.org

120, 672, 523776, 459818240, 1476304896, 51001180160
Offset: 1

Views

Author

Keywords

Comments

These six terms are believed to comprise all 3-perfect numbers. - cf. the MathWorld link. - Daniel Forgues, May 11 2010
If there exists an odd perfect number m (a famous open problem) then 2m would be 3-perfect, since sigma(2m) = sigma(2)*sigma(m) = 3*2m. - Jens Kruse Andersen, Jul 30 2014
According to the previous comment from Jens Kruse Andersen, proving that this sequence is complete would imply that there are no odd perfect numbers. - Farideh Firoozbakht, Sep 09 2014
If 2 were prepended to this sequence, then it would be the sequence of integers k such that numerator(sigma(k)/k) = A017665(k) = 3. - Michel Marcus, Nov 22 2015
From Antti Karttunen, Mar 20 2021, Sep 18 2021, (Start):
Obviously, any odd triperfect numbers k, if they exist, have to be squares for the condition sigma(k) = 3*k to hold, as sigma(k) is odd only for k square or twice a square. The square root would then need to be a term of A097023, because in that case sigma(2*k) = 9*k. (See illustration in A347391).
Conversely to Jens Kruse Andersen's comment above, any 3-perfect number of the form 4k+2 would be twice an odd perfect number. See comment in A347870.
(End)

Examples

			120 = 2^3*3*5;  sigma(120) = (2^4-1)/1*(3^2-1)/2*(5^2-1)/4 = (15)*(4)*(6) = (3*5)*(2^2)*(2*3) = 2^3*3^2*5 = (3) * (2^3*3*5) = 3 * 120. - _Daniel Forgues_, May 09 2010
		

References

  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 120, p. 42, Ellipses, Paris 2008.
  • R. K. Guy, Unsolved Problems in Number Theory, B2.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • I. Stewart, L'univers des nombres, "Les nombres multiparfaits", Chap.15, pp 82-5, Belin/Pour la Science, Paris 2000.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 142.
  • David Wells, "The Penguin Book of Curious and Interesting Numbers," Penguin Books, London, 1986, pages 135, 159 and 185.

Crossrefs

Subsequence of the following sequences: A007691, A069085, A153501, A216780, A292365, A336458, A336461, A336745, and if there are no odd terms, then also of A334410.
Positions of 120's in A094759, 119's in A326200.

Programs

Formula

a(n) = 2*A326051(n). [provided no odd triperfect numbers exist] - Antti Karttunen, Jun 13 2019

Extensions

Wells gives the 6th term as 31001180160, but this is an error.
Edited by Farideh Firoozbakht and N. J. A. Sloane, Sep 09 2014 to remove some incorrect statements.

A347381 Distance from n to the nearest common ancestor of n and sigma(n) in the Doudna-tree (A005940).

Original entry on oeis.org

0, 0, 1, 1, 1, 0, 3, 2, 2, 3, 3, 2, 2, 3, 1, 3, 6, 3, 5, 1, 4, 5, 7, 2, 3, 4, 3, 0, 8, 4, 10, 4, 4, 7, 2, 4, 4, 7, 3, 4, 10, 4, 9, 4, 3, 9, 13, 4, 4, 4, 7, 7, 15, 4, 5, 5, 6, 9, 15, 4, 7, 10, 3, 5, 4, 6, 12, 6, 8, 5, 19, 5, 9, 6, 4, 8, 3, 5, 19, 4, 3, 11, 20, 4, 7, 11, 9, 6, 22, 4, 4, 8, 11, 15, 7, 5, 24, 5, 3, 5, 20
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2021

Keywords

Comments

a(n) tells about the degree of relatedness between n and sigma(n) in Doudna tree (see the illustration in A005940). It is 0 for those n where sigma(n) is one of the descendants of n, 1 for those n where the nearest common ancestor of n and sigma(n) is the parent of n, 2 for those n where the nearest common ancestor of n and sigma(n) is the grandparent of n, and so on.

Crossrefs

Indices of 0 .. 5 in this sequence are given by {2} U A336702, A347391, A347392, A347393, A347394, A374465.
Cf. A000203, A027687, A156552, A252463, A252464, A332221, A347380, A347383, A347384, A347390, A374481 [a(prime(n))], A374482 (indices of records), A374483 (record values).
Cf. also A336834.

Programs

  • PARI
    A000523(n) = logint(n,2);
    Abincompreflen(x, y) = if(!x || !y, 0, my(xl=A000523(x), yl=A000523(y), s=min(xl,yl), k=0); x >>= (xl-s); y >>= (yl-s); while(s>=0 && !bitand(1,bitxor(x>>s,y>>s)), s--; k++); (k));
    A156552(n) = {my(f = factor(n), p, p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ From A156552
    A061395(n) = if(n>1, primepi(vecmax(factor(n)[, 1])), 0);
    A252464(n) = if(1==n,0,(bigomega(n) + A061395(n) - 1));
    A347381(n) = (A252464(n)-Abincompreflen(A156552(n), A156552(sigma(n))));
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    A347381(n) = if(1==n,0, my(lista=List([]), i, k=n, stemvec, stemlen, sbr=sigma(n)); while(k>1, listput(lista,k); k = A252463(k)); stemvec = Vecrev(Vec(lista)); stemlen = #stemvec; while(1, if((i=vecsearch(stemvec,sbr))>0, return(stemlen-i)); sbr = A252463(sbr)));

Formula

a(n) = A252464(n) - A347380(n), where A347380(n) is the length of the common prefix in binary expansions of A156552(n) and A332221(n) = A156552(sigma(n)).

Extensions

Name changed, old name is now in formula section. - Antti Karttunen, Jul 09 2024

A347391 Numbers k such that sigma(k) is either their sibling in Doudna tree (A005940), or one of the sibling's descendants.

Original entry on oeis.org

3, 4, 5, 15, 20, 189, 945, 2125, 6375, 9261, 46305, 401625, 19679625
Offset: 1

Views

Author

Antti Karttunen, Aug 30 2021

Keywords

Comments

Numbers k > 1 such that nearest common ancestor of k and sigma(k) in Doudna tree is the parent of k, and sigma(k) is not a descendant of k.
Any hypothetical odd term x in A005820 (triperfect numbers) would also be a member of this sequence. This is illustrated in the following diagram which shows how the neighborhood of such x would look like in the Doudna tree (A005940). If m (the parent of x, x = A003961(m), m = A064989(x)) is even, then x is a multiple of 3, while if m is odd, then 3 does not divide x. Because the abundancy index decreases when traversing leftwards in the Doudna tree, m must be a term of A068403. Both x and m would also need to be squares, by necessity.
.
<--A003961-- m ---(*2)--->
.............../ \...............
/ \
/ \
x 2m
/ \ / \
etc.../ \.....2x sigma(x) = 3x..../ \.....4m
/ \ / \ / \
etc. etc. etc. \ / etc.
\ /
6x 9x = sigma(2x)
/ \ / \
etc. \ etc. etc.
\
12x = sigma(3x) if m odd.
.
From the diagram we also see that 2x would then need to be a term of A347392 (as well as that of A159907 and also in A074388, thus sqrt(x) should be a term of A097023), and furthermore, if x is not a multiple of 3 (i.e., when m is odd), then sigma(3*x) = 4*sigma(x) = 4*(3*x), thus 3*x = sigma(x) would be a term of A336702 (particularly, in A027687) and x would be a term of A323653.
Moreover, any odd square x in this sequence (for which sigma(x) would also be odd), would have an abundancy index of at least three (sigma(x)/x >= 3). See comments in A347383.
Note how 401625 = 6375 * 63 = 945 * 425, 46305 = 945 * 49, 9261 = 189 * 49, 6375 = 2125 * 3, 945 = 189 * 5 = 15 * 63 and 9261*2125 = 19679625. It seems that when the multiplicands are coprime, then they are both terms of this sequence, e.g. 2125 and 3, 189 and 5, 2125 and 9261.
From Antti Karttunen, Jul 10 2024: (Start)
Regarding the observation above, for two coprime odd numbers x, y, if both are included here because sigma(x) = 2^a * A064989(x) and sigma(y) = 2^b * A064989(y), then also their product x*y is included because in that case sigma(x*y) = 2^(a+b) * A064989(x*y).
Also, for two coprime odd numbers x, y, if both are included here because sigma(x) = A065119(i) * x and sigma(y) = A065119(j) * y, then also their product x*y is included because sigma(x*y) = A065119(k) * x*y, where A065119(k) = A065119(i)*A065119(j). The existence of such numbers (that would include odd triperfect and odd 6-perfect numbers, see A046061) is so far hypothetical, none is known.
It is not possible that the odd x is in this sequence if sigma(x) = k*A003961^e(x) and e = A061395(k)-2 >= 1.
Note that all odd terms < 2^33 here are some of the exponentially odd divisors of 19679625 (see A374199, also A374463 and A374464).
(End)
Question: from a(6) = 189 onward, are the rest of terms all in A347390?
Conjecture: sequence is finite.
If it exists, a(14) > 2^33.

Examples

			Sigma(3) = 4 is located as the sibling of 3 in the Doudna-tree (see the illustration in A005940), thus 3 is included in this sequence.
Sigma(4) = 7 is located as a grandchild of 3 (which is the sibling of 4) in the Doudna-tree, thus 4 is included in this sequence.
Sigma(5) = 6 is located as the sibling of 5 in the Doudna-tree, thus 5 is included in this sequence.
189 (= 3^3 * 7) is a term, as sigma(189) = 320, and 320 occurs as a descendant of 80 (which is the right sibling of 189) in the Doudna tree, as illustrated below:
.
             40
            /  \
   A003961 /    \ *2
          /      \
        189       80
        / \      / \
     etc   etc etc  160
                   / \
                 etc  320
                     / \
                   etc. etc.
.
945 (= 3^3 * 5 * 7) is a term, as sigma(945) = 1920, and 1920 occurs as a descendant of 240, which is the right sibling of 945 in the Doudna tree, as illustrated below:
            120
            /  \
   A003961 /    \ *2
          /      \
        945       240
        / \      / \
     etc   etc  etc  480
                   / \
                 etc  960
                     / \
                   etc. 1920
                        / \
                     etc. etc.
		

Crossrefs

Programs

  • PARI
    isA347391(n) = (1==A347381(n));
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A252463(n) = if(!(n%2),n/2,A064989(n));
    isA347391(n) = if(1==n,0,my(m=A252463(n), s=sigma(n)); while(s>m, if(s==n, return(0)); s = A252463(s)); (s==m));

A348738 Numbers k for which A326042(k) < k, where A326042(n) = A064989(sigma(A003961(n))).

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 10, 11, 13, 14, 15, 17, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 97
Offset: 1

Views

Author

Antti Karttunen, Nov 02 2021

Keywords

Comments

Claim: If there is an odd term y of A336702 larger than one, and it is the least one of such terms, then it should satisfy condition that for all nontrivial unitary divisor pairs d and x/d of x = A064989(y) [with gcd(d,x/d) = 1, 1 < d < x], the other divisor should reside in this sequence, and the other divisor in A348739. Proof: Applying A064989 to the odd terms of A336702 gives the fixed points of A326042. Suppose there are other odd terms in A336702 in addition to its initial 1, and let y be the least of these odd terms > 1 and x = A064989(y). Because A326042 (from here on indicated with f) is multiplicative, it follows that if we take any two nontrivial unitary divisors a and b of x, with x = a*b, gcd(a,b) = 1, 1 < a,b < x, then f(a)*f(b) = f(x) = x. Because f(x)/x = 1, we must have f(a)/a * f(b)/b = 1, as also the ratio f(n)/n is multiplicative. But f(a)/a and f(b)/b cannot be equal to 1, because then a and b would also be fixed by f, which contradicts our assumption that x were the least such fixed point larger than one. Therefore f(a) < a and f(b) > b, or vice versa. See also the comments in A348930, A348933.
Moreover, all odd perfect numbers (a subsequence of A336702), if such numbers exist, should also satisfy the same condition, regardless of whether they are the least of such numbers or not, because having a non-deficient proper divisor will push the abundancy index (ratio sigma(n)/n) of any number over 2. That is, for any such pair of nontrivial unitary divisors d and x/d, both A003961(d) and A003961(x/d) should be deficient, i.e., neither one should be in A337386. See also the condition given in A347383.
Terms that occur also in A337386 are: 120, 240, 360, 420, 480, 504, 540, 600, 630, ...

Crossrefs

Positions of positive terms in A348736, positions of 1's in A348737 (characteristic function).
Almost complement of A348739.
Subsequences: A000040, A374464 (after its initial 1).
Cf. also A348930, A348933.

Programs

  • Mathematica
    f1[2, e_] := 1; f1[p_, e_] := NextPrime[p, -1]^e; s1[1] = 1; s1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[p_, e_] := NextPrime[p]^e; s2[1] = 1; s2[n_] := Times @@ f2 @@@ FactorInteger[n]; Select[Range[100], s1[DivisorSigma[1, s2[#]]] < # &] (* Amiram Eldar, Nov 04 2021 *)
  • PARI
    A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A326042(n) = A064989(sigma(A003961(n)));
    isA348738(n) = (A326042(n)
    				

A347882 Odd numbers k for which A003415(sigma(k^2))-(k^2) is strictly positive and a multiple of 3. Here A003415 is the arithmetic derivative.

Original entry on oeis.org

273, 399, 651, 741, 777, 819, 903, 1197, 1209, 1281, 1365, 1407, 1443, 1533, 1659, 1677, 1767, 1925, 1953, 1995, 2035, 2037, 2109, 2163, 2223, 2289, 2331, 2379, 2451, 2457, 2613, 2667, 2709, 2847, 2919, 3003, 3081, 3171, 3255, 3297, 3423, 3441, 3477, 3591, 3627, 3685, 3705, 3783, 3801, 3819, 3843, 3885, 3999, 4017
Offset: 1

Views

Author

Antti Karttunen, Sep 18 2021

Keywords

Comments

Of the first 200 terms of A097023, 44 appear also in this sequence, the first ones being 50281, 73535, 379953, etc. The square root of any hypothetical odd term appearing in A005820 should satisfy both conditions, and the term itself should appear in both A347383 and A347391.

Crossrefs

Subsequence of A347881. The intersection with A347887 gives A347888.
Cf. also A342923.

Programs

  • Mathematica
    ad[1] = 0; ad[n_] := n * Total@(Last[#]/First[#]& /@ FactorInteger[n]); Select[Range[1, 4000, 2], (d = ad[DivisorSigma[1, #^2]] - #^2) > 0 && Divisible[d, 3] &] (* Amiram Eldar, Sep 18 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA347882(n) = if(!(n%2),0,my(u=(A003415(sigma(n^2))-(n^2))); ((u>0)&&!(u%3)));

A353365 Numbers k such that the odd part of sigma(sigma(k)) is equal to the odd part of sigma(k).

Original entry on oeis.org

1, 5, 12, 427, 9120, 9180, 9504, 9720, 9960, 10296, 10620, 10740, 10824, 11070, 11310, 11480, 11484, 11556, 11628, 11748, 11934, 11960, 12024, 12036, 12072, 12084, 12376, 12460, 12510, 12570, 12640, 12924, 12980, 13000, 13216, 13340, 13554, 13804, 13806, 13962, 13984, 14022, 14056, 14094, 14178, 14212, 14336, 14380
Offset: 1

Views

Author

Antti Karttunen, Apr 17 2022

Keywords

Comments

Numbers k such that sigma(sigma(k)) = 2^e * sigma(k), for some e >= 0.
Numbers k such that sigma(k) is in A336702.
Numbers k for which A000265(A051027(k)) = A161942(k).
If there existed any hypothetical 3-perfect number (A005820) of the form x = 4u+2 and not divisible by 3, then x would be also included in this sequence, as then sigma(sigma(x)) = 12*x = 4*sigma(x). Such x would be also a term of A349745 and of A351458, and x/2 would be a rare odd term of A000396, and also in A336702. See also the diagram in A347392.

Crossrefs

Programs

A374200 a(n) is the minimum value of A347381 that it obtains among the unitary divisors of n larger than 1, where A347381 is the distance from n to the nearest common ancestor of n and sigma(n) in the Doudna-tree (A005940). By convention a(1) = 0.

Original entry on oeis.org

0, 0, 1, 1, 1, 0, 3, 2, 2, 0, 3, 1, 2, 0, 1, 3, 6, 0, 5, 1, 1, 0, 7, 1, 3, 0, 3, 0, 8, 0, 10, 4, 1, 0, 1, 1, 4, 0, 1, 1, 10, 0, 9, 1, 1, 0, 13, 1, 4, 0, 1, 1, 15, 0, 1, 2, 1, 0, 15, 1, 7, 0, 2, 5, 1, 0, 12, 1, 1, 0, 19, 2, 9, 0, 1, 1, 3, 0, 19, 1, 3, 0, 20, 0, 1, 0, 1, 2, 22, 0, 2, 1, 1, 0, 1, 1, 24, 0, 2, 1, 20
Offset: 1

Views

Author

Antti Karttunen, Jul 09 2024

Keywords

Comments

In contrast to A374204 and A374214 it seems that this sequence has no missing values, i.e., it is probably surjective on N.

Crossrefs

Programs

  • PARI
    A374200(n) = { my(m=-1,x); fordiv(n,d,if(d>1 && 1==gcd(d,n/d), x = A347381(d); if(m<0 || x
    				

Formula

a(1) = 0, and for n > 1, a(n) = Min_{d|n, d>1, gcd(d,n/d)=1} A347381(d).

A347390 Odd numbers k that can be factored to such a pair of coprime factors x and y that A347381(k) < min(A347381(x), A347381(y)).

Original entry on oeis.org

189, 455, 945, 1271, 1365, 2125, 4199, 6375, 9261, 12597, 13167, 15631, 18189, 20995, 21275, 24583, 26273, 29393, 30879, 42813, 43475, 46163, 46189, 46305, 46575, 46893, 54653, 63767, 63825, 65317, 67473, 67673, 73749, 78155, 78725, 89503, 90117, 90945, 92783, 93869, 106079, 108819, 119239, 122265, 127323, 129575
Offset: 1

Views

Author

Antti Karttunen, Sep 09 2021

Keywords

Examples

			189 is a term, because A347381(189) = 1, and 189 can be factored as 7*27 with gcd(7,27)=1, and A347381(7) = A347381(27) = 3 > 1.
455 is a term, because A347381(455) = 2, and 455 can be factored as 7*65 with gcd(7,65)=1, and A347381(65) = 4 > A347381(7) = 3 > A347381(455) = 2.
945 is a term, because A347381(945) = 1, and 945 can be factored as 27*35 with gcd(27,35)=1, and A347381(27) = 3 > A347381(35) = 2 > A347381(945) = 1.
1542968918569 = (13*19*47*107)^2 is a term, because it can be factored as 893^2 * 1391^2, with gcd(893^2, 1391^2) = 1, and A347381(1391^2) = 30 > A347381(893^2) = 17 > A347381(1542968918569) = 12. (This is probably the smallest square present in the sequence).
		

Crossrefs

Subsequence of A347384. Cf. also A347383 (subsequence).

Programs

  • PARI
    isA347390(n) = if(!(n%2),0,my(w=A347381(n)); fordiv(n,d,if(d>(n/d),return(0)); if(1==gcd(d,n/d) && (min(A347381(d),A347381(n/d))>w), return(1))); (0));

A347887 Odd numbers k for which A003415(sigma(k^2))-(k^2) is strictly positive and even. Here A003415 is the arithmetic derivative.

Original entry on oeis.org

201, 231, 237, 259, 273, 315, 333, 399, 429, 455, 483, 525, 555, 585, 627, 651, 665, 741, 763, 855, 903, 975, 1057, 1071, 1085, 1113, 1209, 1235, 1351, 1395, 1407, 1505, 1533, 1635, 1659, 1677, 1767, 1785, 1935, 2037, 2079, 2163, 2211, 2265, 2317, 2331, 2345, 2451, 2457, 2479, 2541, 2555, 2583, 2607, 2611, 2613
Offset: 1

Views

Author

Antti Karttunen, Sep 19 2021

Keywords

Comments

A square root of any hypothetical odd term x in A005820 (triperfect numbers) would be a member of this sequence, because such x should be a term of A342923 [Numbers x such that A342925(x)-x = 3*A003415(x)], and as the right hand side would then certainly be even (A235992 contains all odd squares), the left hand side should also be even. See also comments in A347870 and in A347391.

Crossrefs

Subsequence of A347881 and of A347885. The intersection with A347882 gives A347888.

Programs

  • Mathematica
    ad[1] = 0; ad[n_] := n * Total@(Last[#]/First[#]& /@ FactorInteger[n]); Select[Range[1, 3000, 2], (d = ad[DivisorSigma[1, #^2]] - #^2) > 0 && EvenQ[d] &] (* Amiram Eldar, Sep 19 2021 *)
  • PARI
    A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
    isA347887(n) = if(!(n%2),0,my(u=(A003415(sigma(n^2))-(n^2))); ((u>0)&&!(u%2)));

A374218 After the initial 1, numbers k such that A347381 obtains its minimum value at k, of all the divisors d of k larger than one, where A347381 is the distance from n to the nearest common ancestor of n and sigma(n) in the Doudna-tree (A005940).

Original entry on oeis.org

1, 2, 6, 15, 28, 77, 189, 496, 899, 945, 1271, 1403, 2125, 3127, 3139, 6375, 8128, 8383, 9261, 13843, 15247, 15631, 30240, 32760, 45151, 46305, 47263, 54053, 54653, 58339, 63767, 65473, 73813, 79567, 89951, 92783, 94957, 97969, 133907, 142859, 155011, 161257, 189209, 211621, 249001, 293323, 333961, 360883, 368063
Offset: 1

Views

Author

Antti Karttunen, Jul 07 2024

Keywords

Comments

Not all terms of A347383 are included here. The first missing ones are 226967, 925101, 961193, 4566661, 6031163, 6064439, 11234875.

Examples

			189 has divisors 3, 7, 9, 21, 27, 63, 189 larger than 1. A347381 applied to them gives 1, 3, 2, 4, 3, 3, 1, so the largest divisor 189 gets minimal value 1 (which also occurs at the smallest prime divisor 3), thus 189 is included in this sequence.
496 has divisors 2, 4, 8, 16, 31, 62, 124, 248, 496 larger than 1. A347381 applied to them gives 0, 1, 2, 3, 10, 10, 9, 12, 0, so the largest divisor 496 gets minimal value 0 (which also occurs at the smallest prime divisor 2), thus 496 is included in this sequence.
1271 has divisors 31, 41, 1271 larger than 1. A347381 applied to them gives 10, 10, 9, of which minimal value 9 occurs at the largest divisor (1271 itself), thus 1271 is included in this sequence.
		

Crossrefs

Indices of nonpositive terms in A374215.
Cf. A336702, A374219 (subsequences).

Programs

  • PARI
    isA374218(n) = if(n>2 && isprime(n), 0, my(w=A347381(n)); fordiv(n, d, if(d>1 && dA347381(d)
    				

Formula

{k | A347381(k) = A374204(k)}.
{k | A347381(k) <= A374214(k)}.
Showing 1-10 of 12 results. Next