A361907
Number of integer partitions of n such that (length) * (maximum) > 2*n.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 3, 4, 7, 11, 19, 26, 43, 60, 80, 115, 171, 201, 297, 374, 485, 656, 853, 1064, 1343, 1758, 2218, 2673, 3477, 4218, 5423, 6523, 7962, 10017, 12104, 14409, 17978, 22031, 26318, 31453, 38176, 45442, 55137, 65775, 77451, 92533, 111485, 131057
Offset: 1
The a(7) = 3 through a(10) = 11 partitions:
(511) (611) (711) (721)
(4111) (5111) (5211) (811)
(31111) (41111) (6111) (6211)
(311111) (42111) (7111)
(51111) (52111)
(411111) (61111)
(3111111) (421111)
(511111)
(3211111)
(4111111)
(31111111)
The partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 is not > 2*7, so y is not counted under a(7).
The partition y = (4,2,1,1) has length 4 and maximum 4, and 4*4 is not > 2*8, so y is not counted under a(8).
The partition y = (5,1,1,1) has length 4 and maximum 5, and 4*5 > 2*8, so y is counted under a(8).
The partition y = (5,2,1,1) has length 4 and maximum 5, and 4*5 > 2*9, so y is counted under a(9).
The partition y = (3,2,1,1) has diagram:
o o o
o o .
o . .
o . .
with complement (shown in dots) of size 5, and 5 is not > 7, so y is not counted under a(7).
Reversing the inequality gives
A361852.
A051293 counts subsets with integer mean.
A116608 counts partitions by number of distinct parts.
Cf.
A027193,
A111907,
A237752,
A237755,
A237821,
A237824,
A237984,
A324562,
A326622,
A327482,
A349156,
A360071,
A361394.
A362046
Number of nonempty subsets of {1..n} with mean n/2.
Original entry on oeis.org
0, 0, 1, 1, 3, 3, 9, 8, 25, 23, 75, 68, 235, 213, 759, 695, 2521, 2325, 8555, 7941, 29503, 27561, 103129, 96861, 364547, 344003, 1300819, 1232566, 4679471, 4449849, 16952161, 16171117, 61790441, 59107889, 226451035, 217157068, 833918839, 801467551, 3084255127
Offset: 0
The a(2) = 1 through a(7) = 8 subsets:
{1} {1,2} {2} {1,4} {3} {1,6}
{1,3} {2,3} {1,5} {2,5}
{1,2,3} {1,2,3,4} {2,4} {3,4}
{1,2,6} {1,2,4,7}
{1,3,5} {1,2,5,6}
{2,3,4} {1,3,4,6}
{1,2,3,6} {2,3,4,5}
{1,2,4,5} {1,2,3,4,5,6}
{1,2,3,4,5}
Including the empty set gives
A133406.
A000980 counts nonempty subsets of {1..2n-1} with mean n.
A327481 counts subsets by integer mean.
-
Table[Length[Select[Subsets[Range[n]],Mean[#]==n/2&]],{n,0,15}]
A363947
Number of integer partitions of n with mean < 3/2.
Original entry on oeis.org
0, 1, 1, 1, 2, 2, 2, 4, 4, 4, 7, 7, 7, 12, 12, 12, 19, 19, 19, 30, 30, 30, 45, 45, 45, 67, 67, 67, 97, 97, 97, 139, 139, 139, 195, 195, 195, 272, 272, 272, 373, 373, 373, 508, 508, 508, 684, 684, 684, 915, 915, 915, 1212, 1212, 1212, 1597, 1597, 1597, 2087
Offset: 0
The partition y = (2,2,1) has mean 5/3, which is not less than 3/2, so y is not counted under 5.
The a(1) = 1 through a(8) = 4 partitions:
(1) (11) (111) (211) (2111) (21111) (22111) (221111)
(1111) (11111) (111111) (31111) (311111)
(211111) (2111111)
(1111111) (11111111)
The high version is
A000012 (all ones).
This is
A000070 with each term repeated three times (see
A025065 for two).
These partitions have ranks
A363948.
The complement is counted by
A364059.
A327482 counts partitions by integer mean.
Cf.
A000041,
A002865,
A026905,
A027336,
A237984,
A241131,
A327472,
A363724,
A363745,
A363943,
A363949.
-
Table[Length[Select[IntegerPartitions[n],Round[Mean[#]]==1&]],{n,0,15}]
A361852
Number of integer partitions of n such that (length) * (maximum) < 2n.
Original entry on oeis.org
1, 2, 3, 5, 7, 9, 12, 17, 21, 27, 37, 41, 58, 67, 80, 106, 126, 153, 193, 209, 263, 326, 402, 419, 565, 650, 694, 891, 1088, 1120, 1419, 1672, 1987, 2245, 2345, 2856, 3659, 3924, 4519, 4975, 6407, 6534, 8124, 8280, 9545, 12937, 13269, 13788, 16474, 20336
Offset: 1
The a(1) = 1 through a(7) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7)
(11) (21) (22) (32) (33) (43)
(111) (31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (222) (322)
(2111) (321) (331)
(11111) (2211) (421)
(21111) (2221)
(111111) (3211)
(22111)
(211111)
(1111111)
For example, the partition y = (3,2,1,1) has length 4 and maximum 3, and 4*3 < 2*7, so y is counted under a(7).
For length instead of mean we have
A237754.
For median instead of mean we have
A361858.
The complement is counted by
A361906.
Reversing the inequality gives
A361907.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
Cf.
A027193,
A111907,
A116608,
A237824,
A237984,
A324517,
A327482,
A349156,
A360068,
A360071,
A361394.
A360952
Number of strict integer partitions of n with non-integer median; a(0) = 1.
Original entry on oeis.org
1, 0, 0, 1, 0, 2, 0, 3, 0, 4, 1, 6, 1, 8, 4, 11, 5, 15, 10, 20, 13, 27, 22, 36, 28, 47, 43, 63, 56, 82, 79, 107, 103, 140, 141, 180, 181, 232, 242, 299, 308, 380, 402, 483, 511, 613, 656, 772, 824, 969, 1047, 1215, 1309, 1514, 1642, 1882, 2039, 2334, 2539, 2882
Offset: 0
The a(0) = 1 through a(15) = 11 partitions (0 = {}, A..E = 10..14):
0 . . 21 . 32 . 43 . 54 4321 65 6321 76 5432 87
41 52 63 74 85 6431 96
61 72 83 94 6521 A5
81 92 A3 8321 B4
A1 B2 C3
5321 C1 D2
5431 E1
7321 6432
7431
7521
9321
The strict complement is counted by
A359907.
A360005(n)/2 ranks the median statistic.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&!IntegerQ[Median[#]]&]],{n,0,30}]
A362560
Number of integer partitions of n whose weighted sum is not divisible by n.
Original entry on oeis.org
0, 1, 1, 4, 5, 8, 12, 19, 25, 38, 51, 70, 93, 124, 162, 217, 279, 360, 462, 601, 750, 955, 1203, 1502, 1881, 2336, 2892, 3596, 4407, 5416, 6623, 8083, 9830, 11943, 14471, 17488, 21059, 25317, 30376, 36424, 43489, 51906, 61789, 73498, 87186, 103253, 122098
Offset: 1
The weighted sum of y = (3,3,1) is 1*3+2*3+3*1 = 12, which is not a multiple of 7, so y is counted under a(7).
The a(2) = 1 through a(7) = 12 partitions:
(11) (21) (22) (32) (33) (43)
(31) (41) (42) (52)
(211) (221) (51) (61)
(1111) (311) (321) (322)
(2111) (411) (331)
(2211) (421)
(21111) (511)
(111111) (2221)
(4111)
(22111)
(31111)
(211111)
For median instead of mean we have
A322439 aerated, complement
A362558.
The complement is counted by
A362559.
A264034 counts partitions by weighted sum.
A318283 = weighted sum of reversed prime indices, row-sums of
A358136.
Cf.
A001227,
A051293,
A067538,
A240219,
A261079,
A326622,
A349156,
A360068,
A360069,
A360241,
A362051.
-
Table[Length[Select[IntegerPartitions[n],!Divisible[Total[Accumulate[Reverse[#]]],n]&]],{n,30}]
A363745
Number of integer partitions of n whose rounded-down mean is 2.
Original entry on oeis.org
0, 0, 1, 0, 2, 2, 3, 4, 10, 6, 16, 21, 24, 32, 58, 47, 85, 111, 119, 158, 248, 217, 341, 442, 461, 596, 867, 792, 1151, 1465, 1506, 1916, 2652, 2477, 3423, 4298, 4381, 5488, 7334, 6956, 9280, 11503, 11663, 14429, 18781, 17992, 23383, 28675, 28970, 35449, 45203
Offset: 0
The a(2) = 1 through a(10) = 16 partitions:
(2) . (22) (32) (222) (322) (332) (3222) (3322)
(31) (41) (321) (331) (422) (3321) (3331)
(411) (421) (431) (4221) (4222)
(511) (521) (4311) (4321)
(611) (5211) (4411)
(2222) (6111) (5221)
(3221) (5311)
(3311) (6211)
(4211) (7111)
(5111) (22222)
(32221)
(33211)
(42211)
(43111)
(52111)
(61111)
These partitions have ranks
A363954.
Cf.
A000041,
A002865,
A027336,
A237984,
A241131,
A327472,
A327482,
A363723,
A363943,
A363944,
A363946.
-
Table[Length[Select[IntegerPartitions[n],Floor[Mean[#]]==2&]],{n,0,30}]
A363132
Number of integer partitions of 2n such that 2*(minimum) = (mean).
Original entry on oeis.org
0, 0, 1, 2, 5, 6, 15, 14, 32, 34, 65, 55, 150, 100, 225, 237, 425, 296, 824, 489, 1267, 1133, 1809, 1254, 4018, 2142, 4499, 4550, 7939, 4564, 14571, 6841, 18285, 16047, 23408, 17495, 52545, 21636, 49943, 51182, 92516, 44582, 144872, 63260, 175318, 169232, 205353
Offset: 0
The a(2) = 1 through a(7) = 14 partitions:
(31) (321) (62) (32221) (93) (3222221)
(411) (3221) (33211) (552) (3322211)
(3311) (42211) (642) (3332111)
(4211) (43111) (732) (4222211)
(5111) (52111) (822) (4322111)
(61111) (322221) (4331111)
(332211) (4421111)
(333111) (5222111)
(422211) (5321111)
(432111) (5411111)
(441111) (6221111)
(522111) (6311111)
(531111) (7211111)
(621111) (8111111)
(711111)
Removing the factor 2 gives
A099777.
Taking maximum instead of mean and including odd indices gives
A118096.
For length instead of mean and including odd indices we have
A237757.
For median instead of mean we have
A361861.
These partitions have ranks
A363133.
For maximum instead of minimum we have
A363218.
For median instead of minimum we have
A363224.
A051293 counts subsets with integer mean.
A067538 counts partitions with integer mean.
-
Table[Length[Select[IntegerPartitions[2n],2*Min@@#==Mean[#]&]],{n,0,15}]
-
from sympy.utilities.iterables import partitions
def A363132(n): return sum(1 for s,p in partitions(n<<1,m=n,size=True) if n==s*min(p,default=0)) if n else 0 # Chai Wah Wu, Sep 21 2023
A361391
Number of strict integer partitions of n with non-integer mean.
Original entry on oeis.org
1, 0, 0, 1, 0, 2, 0, 4, 2, 4, 5, 11, 0, 17, 15, 13, 15, 37, 18, 53, 24, 48, 78, 103, 23, 111, 152, 143, 123, 255, 110, 339, 238, 372, 495, 377, 243, 759, 845, 873, 414, 1259, 842, 1609, 1383, 1225, 2281, 2589, 1285, 2827, 2518, 3904, 3836, 5119, 3715, 4630
Offset: 0
The a(3) = 1 through a(11) = 11 partitions:
{2,1} . {3,2} . {4,3} {4,3,1} {5,4} {5,3,2} {6,5}
{4,1} {5,2} {5,2,1} {6,3} {5,4,1} {7,4}
{6,1} {7,2} {6,3,1} {8,3}
{4,2,1} {8,1} {7,2,1} {9,2}
{4,3,2,1} {10,1}
{5,4,2}
{6,3,2}
{6,4,1}
{7,3,1}
{8,2,1}
{5,3,2,1}
The strict complement is counted by
A102627.
A327472 counts partitions not containing their mean, complement of
A237984.
A327475 counts subsets with integer mean.
Cf.
A051293,
A082550,
A143773,
A175397,
A175761,
A240219,
A240850,
A326027,
A326641,
A326849,
A359897.
-
a:= proc(m) option remember; local b; b:=
proc(n, i, t) option remember; `if`(i*(i+1)/2Alois P. Heinz, Mar 16 2023
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!IntegerQ[Mean[#]]&]],{n,0,30}]
A361653
Number of even-length integer partitions of n with integer median.
Original entry on oeis.org
0, 0, 1, 0, 3, 1, 5, 3, 11, 7, 17, 16, 32, 31, 52, 55, 90, 99, 144, 167, 236, 273, 371, 442, 587, 696, 901, 1078, 1379, 1651, 2074, 2489, 3102, 3707, 4571, 5467, 6692, 7982, 9696, 11543, 13949, 16563, 19891, 23572, 28185, 33299, 39640, 46737, 55418, 65164
Offset: 0
The a(2) = 1 through a(9) = 7 partitions:
(11) . (22) (2111) (33) (2221) (44) (3222)
(31) (42) (4111) (53) (4221)
(1111) (51) (211111) (62) (4311)
(3111) (71) (6111)
(111111) (2222) (321111)
(3221) (411111)
(3311) (21111111)
(5111)
(221111)
(311111)
(11111111)
For example, the partition (4,3,1,1) has length 4 and median 2, so is counted under a(9).
Cf.
A008284,
A013580,
A079309,
A240219,
A240850,
A349156,
A359897,
A359908,
A359912,
A360005,
A360952.
-
Table[Length[Select[IntegerPartitions[n], EvenQ[Length[#]]&&IntegerQ[Median[#]]&]],{n,0,30}]
Comments