cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 39 results. Next

A357626 Numbers k such that the reversed k-th composition in standard order has half-alternating sum 0.

Original entry on oeis.org

0, 11, 15, 37, 38, 45, 46, 53, 54, 55, 59, 137, 138, 140, 153, 154, 156, 167, 169, 170, 171, 172, 179, 191, 201, 202, 204, 205, 206, 213, 214, 229, 230, 231, 235, 243, 247, 251, 255, 529, 530, 532, 536, 561, 562, 564, 568, 583, 587, 593, 594, 595, 596, 600
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()
   11: (2,1,1)
   15: (1,1,1,1)
   37: (3,2,1)
   38: (3,1,2)
   45: (2,1,2,1)
   46: (2,1,1,2)
   53: (1,2,2,1)
   54: (1,2,1,2)
   55: (1,2,1,1,1)
   59: (1,1,2,1,1)
		

Crossrefs

See link for sequences related to standard compositions.
The alternating form is A344619.
Positions of zeros in A357622.
The non-reverse version is A357625.
The skew-alternating form is A357628, reverse A357627.
The version for prime indices is A357631.
The version for Heinz numbers of partitions is A357635.
A124754 gives alternating sum of standard compositions, reverse A344618.
A357637 counts partitions by half-alternating sum, skew A357638.
A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join@@Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Select[Range[0,100],halfats[Reverse[stc[#]]]==0&]

A357184 Numbers k such that the k-th composition in standard order has the same length as its alternating sum.

Original entry on oeis.org

0, 1, 9, 19, 22, 28, 34, 69, 74, 84, 104, 132, 135, 141, 153, 177, 225, 265, 271, 274, 283, 286, 292, 307, 310, 316, 328, 355, 358, 364, 376, 400, 451, 454, 460, 472, 496, 520, 523, 526, 533, 538, 553, 562, 593, 610, 673, 706, 833, 898, 1041, 1047, 1053, 1058
Offset: 1

Views

Author

Gus Wiseman, Sep 28 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()
    1: (1)
    9: (3,1)
   19: (3,1,1)
   22: (2,1,2)
   28: (1,1,3)
   34: (4,2)
   69: (4,2,1)
   74: (3,2,2)
   84: (2,2,3)
  104: (1,2,4)
  132: (5,3)
  135: (5,1,1,1)
  141: (4,1,2,1)
  153: (3,1,3,1)
  177: (2,1,4,1)
  225: (1,1,5,1)
		

Crossrefs

See link for sequences related to standard compositions.
For product equal to sum we have A335404, counted by A335405.
For sum equal to twice alternating sum we have A348614, counted by A262977.
These compositions are counted by A357182.
For absolute value we have A357184, counted by A357183.
The case of partitions is counted by A357189.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A025047 counts alternating compositions, ranked by A345167.
A032020 counts strict compositions, ranked by A233564.
A124754 gives alternating sums of standard compositions.
A238279 counts compositions by sum and number of maximal runs.
A357136 counts compositions by alternating sum.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[0,100],Length[stc[#]]==ats[stc[#]]&]

A357488 Number of integer partitions of 2n - 1 with the same length as alternating sum.

Original entry on oeis.org

1, 0, 1, 2, 4, 5, 9, 13, 23, 34, 54, 78, 120, 170, 252, 358, 517, 725, 1030, 1427, 1992, 2733, 3759, 5106, 6946, 9345, 12577, 16788, 22384, 29641, 39199, 51529, 67626, 88307, 115083, 149332, 193383, 249456, 321134, 411998, 527472, 673233, 857539, 1089223, 1380772
Offset: 1

Views

Author

Gus Wiseman, Oct 02 2022

Keywords

Comments

A partition of n is a weakly decreasing sequence of positive integers summing to n.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The a(1) = 1 through a(7) = 9 partitions:
  (1)  .  (311)  (322)  (333)    (443)    (553)
                 (421)  (432)    (542)    (652)
                        (531)    (641)    (751)
                        (51111)  (52211)  (52222)
                                 (62111)  (53311)
                                          (62221)
                                          (63211)
                                          (73111)
                                          (7111111)
		

Crossrefs

For product equal to sum we have A001055, compositions A335405.
The version for compositions appears to be A222763, odd version of A357182.
These are the odd-indexed terms of A357189, ranked by A357486.
These partitions are ranked by the odd-sum portion of A357485.
Except at the start, alternately adding zeros gives A357487.
A000041 counts partitions, strict A000009.
A025047 counts alternating compositions.
A103919 counts partitions by alternating sum, full triangle A344651.
A357136 counts compositions by alternating sum, full triangle A097805.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[IntegerPartitions[n],Length[#]==ats[#]&]],{n,1,30,2}]

Formula

a(n) = A357189(2n - 1).

Extensions

More terms from Alois P. Heinz, Oct 04 2022

A357643 Number of integer compositions of n into parts that are alternately equal and unequal.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 5, 5, 9, 7, 17, 14, 28, 25, 49, 42, 87, 75, 150, 132, 266, 226, 466, 399, 810, 704, 1421, 1223, 2488, 2143, 4352, 3759, 7621, 6564, 13339, 11495, 23339, 20135, 40852, 35215, 71512, 61639, 125148, 107912, 219040, 188839, 383391, 330515, 670998
Offset: 0

Views

Author

Gus Wiseman, Oct 12 2022

Keywords

Examples

			The a(1) = 1 through a(8) = 9 compositions:
  (1)  (2)   (3)  (4)    (5)    (6)     (7)      (8)
       (11)       (22)   (113)  (33)    (115)    (44)
                  (112)  (221)  (114)   (223)    (116)
                                (1122)  (331)    (224)
                                (2211)  (11221)  (332)
                                                 (1133)
                                                 (3311)
                                                 (22112)
                                                 (112211)
		

Crossrefs

The even-length version is A003242, ranked by A351010, partitions A035457.
Without equal relations we have A016116, equal only A001590 (apparently).
The version for partitions is A351005.
The opposite version is A357644, partitions A351006.
A011782 counts compositions.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357645 counts compositions by half-alternating sum, skew A357646.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,1,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,2,Length[#]-1,2}]&]],{n,0,15}]
  • PARI
    C_x(N) = {my(x='x+O('x^N), h=(1+sum(k=1,N, (x^k)/(1+x^(2*k))))/(1-sum(k=1,N, (x^(2*k))/(1+x^(2*k))))); Vec(h)}
    C_x(50) \\ John Tyler Rascoe, May 28 2024

Formula

G.f.: (1 + Sum_{k>0} (x^k)/(1 + x^(2*k)))/(1 - Sum_{k>0} (x^(2*k))/(1 + x^(2*k))). - John Tyler Rascoe, May 28 2024

Extensions

More terms from Alois P. Heinz, Oct 12 2022

A357644 Number of integer compositions of n into parts that are alternately unequal and equal.

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 8, 13, 17, 25, 30, 44, 58, 77, 98, 142, 176, 245, 311, 426, 548, 758, 952, 1319, 1682, 2308, 2934, 4059, 5132, 7087, 9008, 12395, 15757, 21728, 27552, 38019, 48272, 66515, 84462, 116467, 147812, 203825, 258772, 356686, 452876, 624399, 792578
Offset: 0

Views

Author

Gus Wiseman, Oct 14 2022

Keywords

Examples

			The a(1) = 1 through a(7) = 13 compositions:
  (1)  (2)  (3)   (4)    (5)    (6)     (7)
            (12)  (13)   (14)   (15)    (16)
            (21)  (31)   (23)   (24)    (25)
                  (211)  (32)   (42)    (34)
                         (41)   (51)    (43)
                         (122)  (411)   (52)
                         (311)  (1221)  (61)
                                (2112)  (133)
                                        (322)
                                        (511)
                                        (2113)
                                        (3112)
                                        (12211)
		

Crossrefs

Without equal relations we have A000213, equal only A027383.
Even-length opposite: A003242, ranked by A351010, partitions A035457.
The version for partitions is A351006.
The opposite version is A357643, partitions A351005.
A011782 counts compositions.
A357621 gives half-alternating sum of standard compositions, skew A357623.
A357645 counts compositions by half-alternating sum, skew A357646.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],And@@Table[#[[i]]==#[[i+1]],{i,2,Length[#]-1,2}]&&And@@Table[#[[i]]!=#[[i+1]],{i,1,Length[#]-1,2}]&]],{n,0,10}]

Extensions

More terms from Alois P. Heinz, Oct 19 2022

A357183 Number of integer compositions with the same length as the absolute value of their alternating sum.

Original entry on oeis.org

1, 1, 0, 0, 2, 3, 2, 5, 12, 22, 26, 58, 100, 203, 282, 616, 962, 2045, 2982, 6518, 9858, 21416, 31680, 69623, 104158, 228930, 339978, 751430, 1119668, 2478787, 3684082, 8182469, 12171900, 27082870, 40247978, 89748642, 133394708, 297933185, 442628598, 990210110
Offset: 0

Views

Author

Gus Wiseman, Sep 28 2022

Keywords

Comments

A composition of n is a finite sequence of positive integers summing to n.
The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i.

Examples

			The a(1) = 1 through a(8) = 12 compositions:
  (1)  (13)  (113)  (24)  (124)  (35)
       (31)  (212)  (42)  (151)  (53)
             (311)        (223)  (1115)
                          (322)  (1151)
                          (421)  (1214)
                                 (1313)
                                 (1412)
                                 (1511)
                                 (2141)
                                 (3131)
                                 (4121)
                                 (5111)
		

Crossrefs

For product instead of length we have A114220.
For sum equal to twice alternating sum we have A262977, ranked by A348614.
For product equal to sum we have A335405, ranked by A335404.
This is the absolute value version of A357182.
These compositions are ranked by A357185.
The case of partitions is A357189.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A025047 counts alternating compositions, ranked by A345167.
A124754 gives alternating sums of standard compositions.
A238279 counts compositions by sum and number of maximal runs.
A261983 counts non-anti-run compositions.
A357136 counts compositions by alternating sum.

Programs

  • Mathematica
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],Length[#]==Abs[ats[#]]&]],{n,0,15}]

Extensions

a(21)-a(39) from Alois P. Heinz, Sep 29 2022

A357485 Heinz numbers of integer partitions with the same length as reverse-alternating sum.

Original entry on oeis.org

1, 2, 20, 42, 45, 105, 110, 125, 176, 182, 231, 245, 312, 374, 396, 429, 494, 605, 663, 680, 702, 780, 782, 845, 891, 969, 1064, 1088, 1100, 1102, 1311, 1426, 1428, 1445, 1530, 1755, 1805, 1820, 1824, 1950, 2001, 2024, 2146, 2156, 2394, 2448, 2475, 2508, 2542
Offset: 1

Views

Author

Gus Wiseman, Oct 01 2022

Keywords

Comments

The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions.
The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^i y_i.

Examples

			The terms together with their prime indices begin:
     1: {}
     2: {1}
    20: {1,1,3}
    42: {1,2,4}
    45: {2,2,3}
   105: {2,3,4}
   110: {1,3,5}
   125: {3,3,3}
   176: {1,1,1,1,5}
   182: {1,4,6}
   231: {2,4,5}
   245: {3,4,4}
   312: {1,1,1,2,6}
   374: {1,5,7}
   396: {1,1,2,2,5}
		

Crossrefs

The version for compositions is A357184, counted by A357182.
These partitions are counted by A357189.
For absolute value we have A357486, counted by A357487.
A000041 counts partitions, strict A000009.
A000712 up to 0's counts partitions w sum = twice alt sum, ranked A349159.
A001055 counts partitions with product equal to sum, ranked by A301987.
A006330 up to 0's counts partitions w sum = twice rev-alt sum, rank A349160.

Programs

  • Mathematica
    primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}];
    Select[Range[100],PrimeOmega[#]==ats[primeMS[#]]&]

A357622 Half-alternating sum of the reversed n-th composition in standard order.

Original entry on oeis.org

0, 1, 2, 2, 3, 3, 3, 1, 4, 4, 4, 0, 4, 2, 2, 0, 5, 5, 5, -1, 5, 1, 1, -1, 5, 3, 3, -1, 3, 1, 1, 1, 6, 6, 6, -2, 6, 0, 0, -2, 6, 2, 2, -2, 2, 0, 0, 2, 6, 4, 4, -2, 4, 0, 0, 0, 4, 2, 2, 0, 2, 2, 2, 2, 7, 7, 7, -3, 7, -1, -1, -3, 7, 1, 1, -3, 1, -1, -1, 3, 7, 3
Offset: 0

Views

Author

Gus Wiseman, Oct 08 2022

Keywords

Comments

We define the half-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A + B - C - D + E + F - G - ...
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The 357-th composition is (2,1,3,2,1) so a(357) = 1 + 2 - 3 - 1 + 2 = 1.
		

Crossrefs

See link for sequences related to standard compositions.
This is the reverse version of A357621.
The skew-alternating form is A357624, non-reverse A357623.
Positions of zeros are A357626, reverse A357625.
The version for prime indices is A357629.
The version for Heinz numbers of partitions is A357633.
A124754 gives alternating sum of standard compositions, reverse A344618.
A357637 counts partitions by half-alternating sum, skew A357638.
A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    halfats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[i/2]),{i,Length[f]}];
    Table[halfats[Reverse[stc[n]]],{n,0,100}]

A357627 Numbers k such that the k-th composition in standard order has skew-alternating sum 0.

Original entry on oeis.org

0, 3, 10, 11, 15, 36, 37, 38, 43, 45, 54, 55, 58, 59, 63, 136, 137, 138, 140, 147, 149, 153, 166, 167, 170, 171, 175, 178, 179, 183, 190, 191, 204, 205, 206, 212, 213, 214, 219, 221, 228, 229, 230, 235, 237, 246, 247, 250, 251, 255, 528, 529, 530, 532, 536
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ....
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()
    3: (1,1)
   10: (2,2)
   11: (2,1,1)
   15: (1,1,1,1)
   36: (3,3)
   37: (3,2,1)
   38: (3,1,2)
   43: (2,2,1,1)
   45: (2,1,2,1)
   54: (1,2,1,2)
   55: (1,2,1,1,1)
   58: (1,1,2,2)
   59: (1,1,2,1,1)
   63: (1,1,1,1,1,1)
		

Crossrefs

See link for sequences related to standard compositions.
The alternating form is A344619.
Positions of zeros in A357623.
The half-alternating form is A357625, reverse A357626.
The reverse version is A357628.
The version for prime indices is A357632.
The version for Heinz numbers of partitions is A357636.
A124754 gives alternating sum of standard compositions, reverse A344618.
A357637 counts partitions by half-alternating sum, skew A357638.
A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Select[Range[0,100],skats[stc[#]]==0&]

A357628 Numbers k such that the reversed k-th composition in standard order has skew-alternating sum 0.

Original entry on oeis.org

0, 3, 10, 14, 15, 36, 43, 44, 45, 52, 54, 58, 59, 61, 63, 136, 147, 149, 152, 153, 166, 168, 170, 175, 178, 179, 181, 183, 185, 190, 200, 204, 211, 212, 213, 217, 219, 221, 228, 230, 234, 235, 237, 239, 242, 246, 247, 250, 254, 255, 528, 547, 549, 553, 560
Offset: 1

Views

Author

Gus Wiseman, Oct 08 2022

Keywords

Comments

We define the skew-alternating sum of a sequence (A, B, C, D, E, F, G, ...) to be A - B - C + D + E - F - G + ....
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.

Examples

			The sequence together with the corresponding compositions begins:
    0: ()
    3: (1,1)
   10: (2,2)
   14: (1,1,2)
   15: (1,1,1,1)
   36: (3,3)
   43: (2,2,1,1)
   44: (2,1,3)
   45: (2,1,2,1)
   52: (1,2,3)
   54: (1,2,1,2)
   58: (1,1,2,2)
   59: (1,1,2,1,1)
   61: (1,1,1,2,1)
   63: (1,1,1,1,1,1)
		

Crossrefs

See link for sequences related to standard compositions.
The alternating form is A344619.
Positions of zeros are A357624, non-reverse A357623.
The half-alternating form is A357626, non-reverse A357625.
The non-reverse version is A357627.
The version for prime indices is A357632.
The version for Heinz numbers of partitions is A357636.
A124754 gives alternating sum of standard compositions, reverse A344618.
A357637 counts partitions by half-alternating sum, skew A357638.
A357641 counts comps w/ half-alt sum 0, partitions A357639, even A357642.

Programs

  • Mathematica
    stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse;
    skats[f_]:=Sum[f[[i]]*(-1)^(1+Ceiling[(i+1)/2]),{i,Length[f]}];
    Select[Range[0,100],skats[Reverse[stc[#]]]==0&]
Previous Showing 11-20 of 39 results. Next