cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 21-30 of 63 results. Next

A238478 Number of partitions of n whose median is a part.

Original entry on oeis.org

1, 2, 2, 4, 5, 8, 11, 17, 22, 32, 43, 59, 78, 105, 136, 181, 233, 302, 386, 496, 626, 796, 999, 1255, 1564, 1951, 2412, 2988, 3674, 4516, 5524, 6753, 8211, 9984, 12086, 14617, 17617, 21211, 25450, 30514, 36475, 43550, 51869, 61707, 73230, 86821, 102706
Offset: 1

Views

Author

Clark Kimberling, Feb 27 2014

Keywords

Comments

Also the number of integer partitions of n with a unique middle part. This means that either the length is odd or the two middle parts are equal. For example, the partition (4,3,2,1) has middle parts {2,3} so is not counted under a(10), but (3,2,2,1) has middle parts {2,2} so is counted under a(8). - Gus Wiseman, May 13 2023

Examples

			a(6) counts these partitions:  6, 411, 33, 321, 3111, 222, 21111, 111111.
		

Crossrefs

For mean instead of median we have A237984, ranks A327473.
The complement is counted by A238479, ranks A362617.
These partitions have ranks A362618.
A000041 counts integer partitions.
A325347 counts partitions with integer median, complement A307683.
A359893/A359901/A359902 count partitions by median.
A359908 ranks partitions with integer median, complement A359912.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Median[p]]], {n, 40}]

Formula

a(n) + A238479(n) = A000041(n).
For all n, a(n) >= A027193(n) (because when a partition of n has an odd number of parts, its median is simply the part at the middle). - Antti Karttunen, Feb 27 2014
a(n) = A078408(n-1) - A282893(n). - Mathew Englander, May 24 2023

A363719 Number of integer partitions of n satisfying (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

1, 2, 2, 3, 2, 4, 2, 5, 3, 5, 2, 10, 2, 7, 7, 12, 2, 18, 2, 24, 16, 13, 2, 58, 15, 18, 37, 60, 2, 123, 2, 98, 79, 35, 103, 332, 2, 49, 166, 451, 2, 515, 2, 473, 738, 92, 2, 1561, 277, 839, 631, 1234, 2, 2043, 1560, 2867, 1156, 225, 2, 9020
Offset: 1

Views

Author

Gus Wiseman, Jun 19 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.
Without loss of generality, we may assume there is a unique middle-part (A238478).
Includes all constant partitions.

Examples

			The a(n) partitions for n = 1, 2, 4, 6, 8, 12, 14, 16 (A..G = 10..16):
  1  2   4     6       8         C             E               G
     11  22    33      44        66            77              88
         1111  222     2222      444           2222222         4444
               111111  3221      3333          3222221         5443
                       11111111  4332          3322211         6442
                                 5331          4222211         7441
                                 222222        11111111111111  22222222
                                 322221                        32222221
                                 422211                        33222211
                                 111111111111                  42222211
                                                               52222111
                                                               1^16
		

Crossrefs

For unequal instead of equal: A363720, ranks A363730, unique mode A363725.
The odd-length case is A363721.
These partitions have ranks A363727, nonprime A363722.
The case of non-constant partitions is A363728, ranks A363729.
The version for factorizations is A363741, see A359909, A359910.
Just two statistics:
- (mean) = (median) gives A240219, also A359889, A359895, A359897, A359899.
- (mean) != (median) gives A359894, also A359890, A359896, A359898, A359900.
- (mean) = (mode) gives A363723, see A363724, A363731.
- (median) = (mode) gives A363740.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or negative mean), strict A008289.
A359893 and A359901 count partitions by median, odd-length A359902.
A362608 counts partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n], {Mean[#]}=={Median[#]}==modes[#]&]],{n,30}]

A363720 Number of integer partitions of n with different mean, median, and mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 3, 5, 7, 16, 17, 34, 38, 50, 79, 115, 123, 198, 220, 291, 399, 536, 605, 815, 1036, 1241, 1520, 2059, 2315, 3132, 3708, 4491, 5668, 6587, 7788, 10259, 12299, 14515, 17153, 21558, 24623, 30876, 35540, 41476, 52023, 61931, 70811, 85545
Offset: 0

Views

Author

Gus Wiseman, Jun 21 2023

Keywords

Comments

If there are multiple modes, then the mode is automatically considered different from the mean and median; otherwise, we take the unique mode.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(7) = 2 through a(11) = 16 partitions:
  (421)   (431)   (621)    (532)     (542)
  (3211)  (521)   (3321)   (541)     (632)
          (4211)  (4311)   (631)     (641)
                  (5211)   (721)     (731)
                  (32211)  (5311)    (821)
                           (6211)    (4322)
                           (322111)  (4421)
                                     (5321)
                                     (5411)
                                     (6311)
                                     (7211)
                                     (33221)
                                     (43211)
                                     (52211)
                                     (332111)
                                     (422111)
		

Crossrefs

For equal instead of unequal: A363719, ranks A363727, odd-length A363721.
The case of a unique mode is A363725.
These partitions have ranks A363730.
For factorizations we have A363742, for equal A363741, see A359909, A359910.
Just two statistics:
- (mean) = (median) gives A240219, also A359889, A359895, A359897, A359899.
- (mean) != (median) gives A359894, also A359890, A359896, A359898, A359900.
- (mean) = (mode) gives A363723, see A363724, A363731.
- (median) = (mode) gives A363740.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or negative mean), strict A008289.
A359893 and A359901 count partitions by median, odd-length A359902.
A362608 counts partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],{Mean[#]}!={Median[#]}!=modes[#]&]],{n,0,30}]

A363731 Number of integer partitions of n whose mean is a mode but not the only mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 1, 0, 5, 0, 1, 8, 5, 0, 12, 0, 19, 14, 2, 0, 52, 21, 3, 23, 59, 0, 122, 0, 97, 46, 6, 167, 303, 0, 8, 82, 559, 0, 543, 0, 355, 745, 15, 0, 1685, 510, 1083, 251, 840, 0, 2325, 1832, 3692, 426, 34, 0, 9599
Offset: 0

Views

Author

Gus Wiseman, Jun 24 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(n) partitions for n = 6, 9, 12, 15, 18:
  (3,2,1)  (4,3,2)  (5,4,3)        (6,5,4)      (7,6,5)
           (5,3,1)  (6,4,2)        (7,5,3)      (8,6,4)
                    (7,4,1)        (8,5,2)      (9,6,3)
                    (6,3,2,1)      (9,5,1)      (10,6,2)
                    (3,3,2,2,1,1)  (4,4,3,3,1)  (11,6,1)
                                   (5,3,3,2,2)  (4,4,3,3,2,2)
                                   (5,4,3,2,1)  (5,5,3,3,1,1)
                                   (7,3,3,1,1)  (6,4,3,3,1,1)
                                                (7,3,3,2,2,1)
                                                (8,3,3,2,1,1)
                                                (3,3,3,2,2,2,1,1,1)
                                                (6,2,2,2,2,1,1,1,1)
		

Crossrefs

For a unique mode we have A363723, non-constant A362562.
For any number of modes we have A363724.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A237984 counts partitions containing their mean, ranks A327473.
A327472 counts partitions not containing their mean, ranks A327476.
A362608 counts partitions with a unique mode, ranks A356862.
A363719 counts partitions with all three averages equal, ranks A363727.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],MemberQ[modes[#],Mean[#]]&&!{Mean[#]}==modes[#]&]],{n,30}]

A171979 Number of partitions of n such that smaller parts do not occur more frequently than greater parts.

Original entry on oeis.org

1, 1, 2, 3, 4, 5, 8, 8, 12, 14, 19, 21, 30, 31, 42, 50, 62, 69, 91, 99, 126, 144, 175, 198, 246, 275, 331, 379, 452, 509, 612, 686, 811, 922, 1076, 1219, 1428, 1604, 1863, 2108, 2434, 2739, 3162, 3551, 4075, 4593, 5240, 5885, 6721, 7527, 8556, 9597, 10870
Offset: 0

Views

Author

Reinhard Zumkeller, Jan 20 2010

Keywords

Comments

A000009(n) <= a(n) <= A000041(n).
Equivalently, the number of partitions of n such that (maximal multiplicity of parts) = (multiplicity of the maximal part), as in the Mathematica program. - Clark Kimberling, Apr 04 2014
Also the number of integer partitions of n whose greatest part is a mode, meaning it appears at least as many times as each of the others. The name "Number of partitions of n such that smaller parts do not occur more frequently than greater parts" seems to describe A100882 = "Number of partitions of n in which the sequence of frequencies of the summands is nonincreasing," which first differs from this at n = 10 due to the partition (3,3,2,1,1). - Gus Wiseman, May 07 2023

Examples

			a(5) = #{5, 4+1, 3+2, 2+2+1, 5x1} = 5;
a(6) = #{6, 5+1, 4+2, 3+3, 3+2+1, 2+2+2, 2+2+1+1, 6x1} = 8;
a(7) = #{7, 6+1, 5+2, 4+3, 4+2+1, 3+3+1, 2+2+2+1, 7x1} = 8;
a(8) = #{8, 7+1, 6+2, 5+3, 5+2+1, 4+4, 4+3+1, 3+3+2, 3+3+1+1, 2+2+2+2, 2+2+2+1+1, 8x1} = 12.
		

Crossrefs

For median instead of mode we have A053263.
The complement is counted by A240302.
The case where the maximum is the only mode is A362612.
A000041 counts integer partitions, strict A000009.
A362608 counts partitions with a unique mode, complement A362607.
A362611 counts modes in prime factorization.
A362614 counts partitions by number of modes.

Programs

  • Mathematica
    z = 60; f[n_] := f[n] = IntegerPartitions[n]; m[p_] := Max[Map[Length, Split[p]]]  (* maximal multiplicity *)
    Table[Count[f[n], p_ /; m[p] == Count[p, Max[p]]], {n, 0, z}] (* this sequence *)
    Table[Count[f[n], p_ /; m[p] > Count[p, Max[p]]], {n, 0, z}]  (* A240302 *)
    (* Clark Kimberling, Apr 04 2014 *)
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0, If[k == 0, 1, 0],
         If[i < 1, 0, b[n, i - 1, k] + Sum[b[n - i*j, i - 1,
         If[k == -1, j, If[k == 0, 0, If[j > k, 0, k]]]], {j, 1, n/i}]]];
    a[n_] := PartitionsP[n] - b[n, n, -1];
    a /@ Range[0, 70] (* Jean-François Alcover, Jun 05 2021, after Alois P. Heinz in A240302 *)
    Table[Length[Select[IntegerPartitions[n],MemberQ[Commonest[#],Max[#]]&]],{n,0,30}] (* Gus Wiseman, May 07 2023 *)
  • PARI
    { my(N=53, x='x+O('x^N));
    my(gf=1+sum(i=1,N,sum(j=1,floor(N/i),x^(i*j)*prod(k=1,i-1,(1-x^(k*(j+1)))/(1-x^k)))));
    Vec(gf) } \\ John Tyler Rascoe, Mar 09 2024

Formula

a(n) = p(n,0,1,1) with p(n,i,j,k) = if k<=n then p(n-k,i,j+1,k) +p(n,max(i,j),1,k+1) else (if j0 then 0 else 1).
a(n) + A240302(n) = A000041(n). - Clark Kimberling, Apr 04 2014.
G.f.: 1 + Sum_{i, j>0} x^(i*j) * Product_{k=1..i-1} ((1 - x^(k*(j+1)))/(1 - x^k)). - John Tyler Rascoe, Mar 09 2024

A363725 Number of integer partitions of n with a different mean, median, and mode, assuming there is a unique mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 3, 3, 8, 8, 17, 19, 28, 39, 59, 68, 106, 123, 165, 220, 301, 361, 477, 605, 745, 929, 1245, 1456, 1932, 2328, 2846, 3590, 4292, 5111, 6665, 8040, 9607, 11532, 14410, 16699, 20894, 24287, 28706, 35745, 42845, 49548, 59963, 70985
Offset: 0

Author

Gus Wiseman, Jun 22 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.

Examples

			The a(7) = 1 through a(13) = 17 partitions:
  (3211)  (4211)  (3321)  (5311)    (4322)    (4431)    (4432)
                  (4311)  (6211)    (4421)    (5322)    (5422)
                  (5211)  (322111)  (5411)    (6411)    (5521)
                                    (6311)    (7311)    (6322)
                                    (7211)    (8211)    (6511)
                                    (43211)   (53211)   (7411)
                                    (332111)  (432111)  (8311)
                                    (422111)  (522111)  (9211)
                                                        (54211)
                                                        (63211)
                                                        (333211)
                                                        (433111)
                                                        (442111)
                                                        (532111)
                                                        (622111)
                                                        (3322111)
                                                        (32221111)
		

Crossrefs

The length-4 case appears to be A325695.
For equal instead of unequal we have A363719, ranks A363727.
Allowing multiple modes gives A363720, ranks A363730.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median, odd-length A359902.
A362608 counts partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n], Length[modes[#]]==1&&Mean[#]!=Median[#]!=First[modes[#]]&]],{n,0,30}]

A383094 Number of integer partitions of n having exactly one permutation with all equal run-lengths.

Original entry on oeis.org

1, 1, 2, 2, 4, 4, 5, 6, 9, 7, 11, 10, 13, 12, 17, 14, 21, 16, 21, 18, 27, 22, 29, 22, 34, 25, 35, 28, 41, 28, 43, 30, 48, 38, 47, 38, 55, 36, 53, 46, 64, 40, 67, 42, 69, 54, 65, 46, 84, 51, 75, 62, 83, 52, 86, 62, 94, 70, 83, 58, 111, 60, 89, 80, 106, 74, 115, 66, 111
Offset: 0

Author

Gus Wiseman, Apr 20 2025

Keywords

Examples

			The partition (222211) has exactly one permutation with all equal run-lengths: (221122), so is counted under a(10).
The a(1) = 1 through a(8) = 9 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (322)      (44)
                    (211)   (311)    (222)     (331)      (332)
                    (1111)  (11111)  (411)     (511)      (422)
                                     (111111)  (22111)    (611)
                                               (1111111)  (2222)
                                                          (22211)
                                                          (221111)
                                                          (11111111)
		

Crossrefs

The complement is ranked by A382879 \/ A383089.
For no choices we have A382915, ranks A382879.
For at least one choice we have A383013, for run-sums A383098, ranks A383110.
For more than one choice we have A383090, ranks A383089.
For at most one choice we have A383092, ranks A383091.
For run-sums instead of lengths we have A383095, ranks A383099.
Partitions of this type are ranked by A383112 = positions of 1 in A382857.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A239455 counts Look-and-Say partitions, ranks A351294, conjugate A381432.
A329738 counts compositions with equal run-lengths, ranks A353744.
A329739 counts compositions with distinct run-lengths, ranks A351596, complement A351291.
A351293 counts non-Look-and-Say partitions, ranks A351295, conjugate A381433.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Length[Select[Permutations[#], SameQ@@Length/@Split[#]&]]==1&]],{n,0,20}]

Extensions

More terms from Bert Dobbelaere, Apr 26 2025

A363730 Numbers whose prime indices have different mean, median, and mode.

Original entry on oeis.org

42, 60, 66, 70, 78, 84, 102, 114, 130, 132, 138, 140, 150, 154, 156, 165, 170, 174, 180, 182, 186, 190, 195, 204, 220, 222, 228, 230, 231, 246, 255, 258, 260, 266, 276, 282, 285, 286, 290, 294, 308, 310, 315, 318, 322, 330, 340, 345, 348, 354, 357, 360, 364
Offset: 1

Author

Gus Wiseman, Jun 24 2023

Keywords

Comments

If there are multiple modes, then the mode is automatically considered different from the mean and median; otherwise, we take the unique mode.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes in {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 180 are {1,1,2,2,3}, with mean 9/5, median 2, modes {1,2}, so 180 is in the sequence.
The prime indices of 108 are {1,1,2,2,2}, with mean 8/5, median 2, modes {2}, so 108 is not in the sequence.
The terms together with their prime indices begin:
   42: {1,2,4}
   60: {1,1,2,3}
   66: {1,2,5}
   70: {1,3,4}
   78: {1,2,6}
   84: {1,1,2,4}
  102: {1,2,7}
  114: {1,2,8}
  130: {1,3,6}
  132: {1,1,2,5}
  138: {1,2,9}
  140: {1,1,3,4}
  150: {1,2,3,3}
		

Crossrefs

These partitions are counted by A363720
For equal instead of unequal we have A363727, counted by A363719.
The version for factorizations is A363742, equal A363741.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives mean of prime indices.
A356862 ranks partitions with a unique mode, counted by A362608.
A359178 ranks partitions with multiple modes, counted by A362610.
A360005 gives twice the median of prime indices.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.
A363486 gives least mode in prime indices, A363487 greatest.
Just two statistics:
- (mean) = (median): A359889, counted by A240219.
- (mean) != (median): A359890, counted by A359894.
- (mean) = (mode): counted by A363723, see A363724, A363731.
- (median) = (mode): counted by A363740.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Select[Range[100],{Mean[prix[#]]}!={Median[prix[#]]}!=modes[prix[#]]&]

Formula

All three of A326567(a(n))/A326568(a(n)), A360005(a(n))/2, and A363486(a(n)) = A363487(a(n)) are different.

A364061 Numbers whose exponent of 2 in their canonical prime factorization is smaller than all the other exponents.

Original entry on oeis.org

2, 4, 8, 16, 18, 32, 50, 54, 64, 98, 108, 128, 162, 242, 250, 256, 324, 338, 450, 486, 500, 512, 578, 648, 686, 722, 882, 972, 1024, 1058, 1250, 1350, 1372, 1458, 1682, 1922, 1944, 2048, 2178, 2250, 2450, 2500, 2646, 2662, 2738, 2916, 3042, 3362, 3698, 3888
Offset: 1

Author

Gus Wiseman, Jul 12 2023

Keywords

Comments

Also numbers whose multiset of prime factors has unique co-mode 2. Here, a co-mode in a multiset is an element that appears at most as many times as each of the other elements. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}.

Examples

			The terms together with their prime factors begin:
    2 = 2
    4 = 2*2
    8 = 2*2*2
   16 = 2*2*2*2
   18 = 2*3*3
   32 = 2*2*2*2*2
   50 = 2*5*5
   54 = 2*3*3*3
   64 = 2*2*2*2*2*2
   98 = 2*7*7
  108 = 2*2*3*3*3
  128 = 2*2*2*2*2*2*2
		

Crossrefs

For any unique co-mode: A359178, counted by A362610, complement A362606.
For high mode: A360013, positions of 1's in A363487, counted by A241131.
For low mode: A360015, positions of 1's in A363486, counted by A241131.
Partitions of this type are counted by A364062.
For low co-mode: A364158, positions of 1's in A364192, counted by A364159.
Positions of 1's in A364191, high A364192.
A112798 lists prime indices, length A001222, sum A056239.
A356862 ranks partitions w/ unique mode, count A362608, complement A362605.
A362611 counts modes in prime indices, triangle A362614.
A362613 counts co-modes in prime indices, triangle A362615.

Programs

  • Maple
    filter:= proc(n) local F,F2,Fo;
      F:= ifactors(n)[2];
      F2,Fo:= selectremove(t -> t[1]=2, F);
      Fo = [] or F2[1,2] < min(Fo[..,2])
    end proc:
    select(filter, 2*[$1..5000]); # Robert Israel, Apr 22 2024
  • Mathematica
    prifacs[n_]:=If[n==1,{},Flatten[ConstantArray@@@FactorInteger[n]]];
    comodes[ms_]:=Select[Union[ms],Count[ms,#]<=Min@@Length/@Split[ms]&];
    Select[Range[100],comodes[prifacs[#]]=={2}&]
  • Python
    from sympy import factorint
    from itertools import count, islice
    def A364061_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:(l:=(~n&n-1).bit_length()) < min(factorint(m:=n>>l).values(),default=0) or m==1, count(max(startvalue+startvalue&1,2),2))
    A364061_list = list(islice(A364061_gen(),30)) # Chai Wah Wu, Jul 14 2023

Formula

Sum_{n>=1} 1/a(n) = 1 + Sum_{k>=2} (1-1/2^(k-1))*(s(k)-s(k+1)) = 1.16896822653093929144..., where s(k) = Product_{primes p >= 3} (1 + 1/(p^(k-1)*(p-1))) is the sum of reciprocals of the odd k-full numbers (numbers whose prime factorization has no exponent that is smaller than k). - Amiram Eldar, Aug 30 2024

A363728 Number of integer partitions of n that are not constant but satisfy (mean) = (median) = (mode), assuming there is a unique mode.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 4, 0, 3, 3, 7, 0, 12, 0, 18, 12, 9, 0, 50, 12, 14, 33, 54, 0, 115, 0, 92, 75, 31, 99, 323, 0, 45, 162, 443, 0, 507, 0, 467, 732, 88, 0, 1551, 274, 833, 627, 1228, 0, 2035, 1556, 2859, 1152, 221, 0, 9008, 0, 295, 4835, 5358
Offset: 1

Author

Gus Wiseman, Jun 23 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(8) = 1 through a(18) = 12 partitions:
  3221  .  32221  .  4332    .  3222221  43332  5443      .  433332
                     5331       3322211  53331  6442         443331
                     322221     4222211  63321  7441         533322
                     422211                     32222221     533331
                                                33222211     543321
                                                42222211     633321
                                                52222111     733311
                                                             322222221
                                                             332222211
                                                             422222211
                                                             432222111
                                                             522222111
		

Crossrefs

Non-constant partitions are counted by A144300, ranks A024619.
This is the non-constant case of A363719, ranks A363727.
These partitions have ranks A363729.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length (or decreasing mean), strict A008289.
A359893 and A359901 count partitions by median, odd-length A359902.
A362608 counts partitions with a unique mode.

Programs

  • Mathematica
    modes[ms_]:=Select[Union[ms],Count[ms,#]>=Max@@Length/@Split[ms]&];
    Table[Length[Select[IntegerPartitions[n],!SameQ@@#&&{Mean[#]}=={Median[#]}==modes[#]&]],{n,30}]
Previous Showing 21-30 of 63 results. Next