A364347
Numbers k > 0 such that if prime(a) and prime(b) both divide k, then prime(a+b) does not.
Original entry on oeis.org
1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85
Offset: 1
We don't have 6 because prime(1), prime(1), and prime(1+1) are all divisors.
The terms together with their prime indices begin:
1: {}
2: {1}
3: {2}
4: {1,1}
5: {3}
7: {4}
8: {1,1,1}
9: {2,2}
10: {1,3}
11: {5}
13: {6}
14: {1,4}
15: {2,3}
16: {1,1,1,1}
17: {7}
19: {8}
20: {1,1,3}
Subsets of this type are counted by
A007865 (sum-free sets).
Partitions of this type are counted by
A364345.
The squarefree case is counted by
A364346.
The non-binary version is counted by
A364350.
Without re-using parts we have complement
A364462, counted by
A237113.
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Intersection[prix[#],Total/@Tuples[prix[#],2]]=={}&]
A367224
Numbers m with a divisor whose prime indices sum to bigomega(m).
Original entry on oeis.org
1, 2, 4, 6, 8, 9, 12, 15, 16, 18, 20, 21, 24, 30, 32, 33, 36, 39, 40, 42, 45, 48, 50, 51, 54, 56, 57, 60, 64, 66, 69, 70, 72, 75, 78, 80, 81, 84, 87, 90, 93, 96, 100, 102, 105, 108, 110, 111, 112, 114, 120, 123, 125, 126, 128, 129, 130, 132, 135, 138, 140, 141
Offset: 1
The prime indices of 24 are {1,1,1,2} with submultiset {1,1,2} summing to 4, so 24 is in the sequence.
The terms together with their prime indices begin:
1: {}
2: {1}
4: {1,1}
6: {1,2}
8: {1,1,1}
9: {2,2}
12: {1,1,2}
15: {2,3}
16: {1,1,1,1}
18: {1,2,2}
20: {1,1,3}
21: {2,4}
24: {1,1,1,2}
30: {1,2,3}
32: {1,1,1,1,1}
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
Triangles:
A046663 counts partitions of n without a subset-sum k, strict
A365663.
-
prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p], {k}]]]];
Select[Range[100], MemberQ[Total/@prix/@Divisors[#], PrimeOmega[#]]&]
A363226
Number of strict integer partitions of n containing some three possibly equal parts (a,b,c) such that a + b = c. A variation of sum-full strict partitions.
Original entry on oeis.org
0, 0, 0, 1, 0, 0, 2, 1, 2, 3, 5, 4, 6, 7, 11, 11, 16, 18, 26, 29, 34, 42, 51, 62, 72, 84, 101, 119, 142, 166, 191, 226, 262, 300, 354, 405, 467, 540, 623, 705, 807, 927, 1060, 1206, 1369, 1551, 1760, 1998, 2248, 2556, 2861, 3236, 3628, 4100, 4587, 5152, 5756
Offset: 0
The a(3) = 1 through a(15) = 11 partitions (A=10, B=11, C=12):
21 . . 42 421 431 63 532 542 84 643 653 A5
321 521 432 541 632 642 742 743 843
621 631 821 651 841 752 942
721 5321 921 A21 761 C21
4321 5421 5431 842 6432
6321 6421 B21 6531
7321 5432 7431
6431 7521
6521 8421
7421 9321
8321 54321
For subsets of {1..n} we have
A093971 (sum-full sets), complement
A007865.
A236912 counts sum-free partitions not re-using parts, complement
A237113.
-
Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]!={}&]],{n,0,30}]
-
from itertools import combinations_with_replacement
from collections import Counter
from sympy.utilities.iterables import partitions
def A363226(n): return sum(1 for p in partitions(n) if max(p.values(),default=0)==1 and any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # Chai Wah Wu, Sep 20 2023
A367212
Number of integer partitions of n whose length (number of parts) is equal to the sum of some submultiset.
Original entry on oeis.org
1, 1, 1, 2, 3, 5, 6, 11, 15, 22, 30, 43, 58, 80, 106, 143, 186, 248, 318, 417, 530, 684, 863, 1103, 1379, 1741, 2162, 2707, 3339, 4145, 5081, 6263, 7640, 9357, 11350, 13822, 16692, 20214, 24301, 29300, 35073, 42085, 50208, 59981, 71294, 84866, 100509, 119206
Offset: 0
The partition (3,2,1,1) has submultisets (3,1) or (2,1,1) with sum 4, so is counted under a(7).
The a(1) = 1 through a(8) = 15 partitions:
(1) (11) (21) (22) (32) (42) (52) (62)
(111) (211) (221) (321) (322) (332)
(1111) (311) (2211) (331) (431)
(2111) (3111) (421) (521)
(11111) (21111) (2221) (2222)
(111111) (3211) (3221)
(4111) (3311)
(22111) (4211)
(31111) (22211)
(211111) (32111)
(1111111) (41111)
(221111)
(311111)
(2111111)
(11111111)
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
Triangles:
-
Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]
A367214
Number of strict integer partitions of n whose length (number of parts) is equal to the sum of some submultiset.
Original entry on oeis.org
1, 1, 0, 1, 0, 1, 2, 2, 3, 4, 5, 5, 7, 8, 10, 12, 14, 17, 21, 25, 30, 36, 43, 51, 60, 71, 83, 97, 113, 132, 153, 178, 205, 238, 272, 315, 360, 413, 471, 539, 613, 698, 792, 899, 1018, 1153, 1302, 1470, 1658, 1867, 2100, 2362, 2652, 2974, 3335, 3734, 4178, 4672
Offset: 0
The strict partition (6,4,3,2,1) has submultisets {1,4} and {2,3} with sum 5 so is counted under a(16).
The a(1) = 1 through a(10) = 5 strict partitions:
(1) . (2,1) . (3,2) (4,2) (5,2) (6,2) (7,2) (8,2)
(3,2,1) (4,2,1) (4,3,1) (4,3,2) (5,3,2)
(5,2,1) (5,3,1) (6,3,1)
(6,2,1) (7,2,1)
(4,3,2,1)
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A240855 counts strict partitions whose length is a part, complement
A240861.
Triangles:
A365661 counts strict partitions with a subset-sum k, non-strict
A365543.
Cf.
A002865,
A126796,
A237113,
A237668,
A238628,
A363225,
A364346,
A364350,
A364533,
A365311,
A365922.
-
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]
A367218
Number of integer partitions of n whose length can be written as a nonnegative linear combination of the distinct parts.
Original entry on oeis.org
1, 1, 1, 2, 4, 6, 8, 13, 18, 26, 35, 50, 66, 92, 119, 160, 208, 275, 350, 457, 579, 742, 933, 1185, 1476, 1859, 2300, 2868, 3531, 4371, 5343, 6575, 8003, 9776, 11842, 14394, 17351, 20987, 25191, 30315, 36257, 43448, 51753, 61776, 73342, 87192, 103184, 122253, 144211
Offset: 0
The partition (4,2,1) has 3 = (2)+(1) or 3 = (1+1+1) so is counted under a(7).
The a(1) = 1 through a(7) = 13 partitions:
(1) (11) (21) (22) (32) (42) (52)
(111) (31) (41) (51) (61)
(211) (221) (321) (322)
(1111) (311) (411) (331)
(2111) (2211) (421)
(11111) (3111) (511)
(21111) (2221)
(111111) (3211)
(4111)
(22111)
(31111)
(211111)
(1111111)
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A240855 counts strict partitions whose length is a part, complement
A240861.
-
combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
Table[Length[Select[IntegerPartitions[n], combs[Length[#], Union[#]]!={}&]], {n,0,15}]
A367220
Number of strict integer partitions of n whose length (number of parts) can be written as a nonnegative linear combination of the parts.
Original entry on oeis.org
1, 1, 0, 1, 1, 2, 3, 3, 4, 5, 7, 7, 10, 11, 15, 17, 22, 25, 32, 37, 46, 53, 65, 75, 90, 105, 124, 143, 168, 193, 224, 258, 297, 340, 390, 446, 509, 580, 660, 751, 852, 967, 1095, 1240, 1401, 1584, 1786, 2015, 2269, 2554, 2869, 3226, 3617, 4056, 4541, 5084
Offset: 0
The a(3) = 1 through a(10) = 7 strict partitions:
(2,1) (3,1) (3,2) (4,2) (5,2) (6,2) (7,2) (8,2)
(4,1) (5,1) (6,1) (7,1) (8,1) (9,1)
(3,2,1) (4,2,1) (4,3,1) (4,3,2) (5,3,2)
(5,2,1) (5,3,1) (5,4,1)
(6,2,1) (6,3,1)
(7,2,1)
(4,3,2,1)
The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A240855 counts strict partitions whose length is a part, complement
A240861.
Cf.
A008289,
A088314,
A116861,
A124506,
A363225,
A364346,
A364350,
A364916,
A365073,
A365311,
A365312.
-
combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]!={}&]], {n,0,15}]
A363260
Number of integer partitions of n with parts disjoint from first differences of parts, meaning no part is the difference of two consecutive parts.
Original entry on oeis.org
1, 1, 2, 2, 4, 5, 7, 10, 13, 17, 21, 28, 35, 46, 57, 70, 87, 110, 130, 165, 198, 238, 285, 349, 410, 498, 583, 702, 819, 983, 1136, 1353, 1570, 1852, 2137, 2520, 2898, 3390, 3891, 4540, 5191, 6028, 6889, 7951, 9082, 10450, 11884, 13650, 15508, 17728, 20113
Offset: 0
The a(1) = 1 through a(8) = 13 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (111) (22) (32) (33) (43) (44)
(31) (41) (51) (52) (53)
(1111) (311) (222) (61) (62)
(11111) (411) (322) (71)
(3111) (331) (332)
(111111) (511) (611)
(4111) (2222)
(31111) (3311)
(1111111) (5111)
(41111)
(311111)
(11111111)
For all differences of pairs parts we have
A364345.
For subsets of {1..n} instead of partitions we have
A364463.
A325325 counts partitions with distinct first-differences.
-
Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]=={}&]],{n,0,30}]
-
from collections import Counter
from sympy.utilities.iterables import partitions
def A363260(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023
A364461
Positive integers such that if prime(a)*prime(b) is a divisor, prime(a+b) is not.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76
Offset: 1
The prime indices of 198 are {1,2,2,5}, which is sum-free even though it is not knapsack (A299702, A299729), so 198 is in the sequence.
Subsets of this type are counted by
A085489, with re-usable parts
A007865.
Subsets not of this type are counted by
A093971, w/ re-usable parts
A088809.
Partitions of this type are counted by
A236912.
The complement allowing parts to be re-used is
A364348, counted by
A363225.
The non-binary version allowing re-used parts is counted by
A364350.
-
prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Intersection[prix[#], Total/@Subsets[prix[#],{2}]]=={}&]
A364462
Positive integers having a divisor of the form prime(a)*prime(b) such that prime(a+b) is also a divisor.
Original entry on oeis.org
12, 24, 30, 36, 48, 60, 63, 70, 72, 84, 90, 96, 108, 120, 126, 132, 140, 144, 150, 154, 156, 165, 168, 180, 189, 192, 204, 210, 216, 228, 240, 252, 264, 270, 273, 276, 280, 286, 288, 300, 308, 312, 315, 324, 325, 330, 336, 348, 350, 360, 372, 378, 384, 390
Offset: 1
The terms together with their prime indices begin:
12: {1,1,2}
24: {1,1,1,2}
30: {1,2,3}
36: {1,1,2,2}
48: {1,1,1,1,2}
60: {1,1,2,3}
63: {2,2,4}
70: {1,3,4}
72: {1,1,1,2,2}
84: {1,1,2,4}
90: {1,2,2,3}
96: {1,1,1,1,1,2}
108: {1,1,2,2,2}
120: {1,1,1,2,3}
126: {1,2,2,4}
132: {1,1,2,5}
140: {1,1,3,4}
144: {1,1,1,1,2,2}
Subsets not of this type are counted by
A085489, w/ re-usable parts
A007865.
Subsets of this type are counted by
A088809, with re-usable parts
A093971.
Partitions not of this type are counted by
A236912.
Partitions of this type are counted by
A237113.
-
filter:= proc(n) local F, i,j,m;
F:= map(t -> `if`(t[2]>=2, numtheory:-pi(t[1])$2, numtheory:-pi(t[1])), ifactors(n)[2]);
for i from 1 to nops(F)-1 do for j from 1 to i-1 do
if member(F[i]+F[j],F) then return true fi
od od;
false
end proc:
select(filter, [$1..1000]); # Robert Israel, Aug 30 2023
-
prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
Select[Range[100],Intersection[prix[#], Total/@Subsets[prix[#],{2}]]!={}&]
Comments