cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 49 results. Next

A364347 Numbers k > 0 such that if prime(a) and prime(b) both divide k, then prime(a+b) does not.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 61, 62, 64, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 82, 83, 85
Offset: 1

Views

Author

Gus Wiseman, Jul 26 2023

Keywords

Comments

Or numbers without any prime index equal to the sum of two others, allowing re-used parts.
Also Heinz numbers of a type of sum-free partitions counted by A364345.

Examples

			We don't have 6 because prime(1), prime(1), and prime(1+1) are all divisors.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   14: {1,4}
   15: {2,3}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   20: {1,1,3}
		

Crossrefs

Subsets of this type are counted by A007865 (sum-free sets).
Partitions of this type are counted by A364345.
The squarefree case is counted by A364346.
The complement is A364348, counted by A363225.
The non-binary version is counted by A364350.
Without re-using parts we have A364461, counted by A236912.
Without re-using parts we have complement A364462, counted by A237113.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#],Total/@Tuples[prix[#],2]]=={}&]

A367224 Numbers m with a divisor whose prime indices sum to bigomega(m).

Original entry on oeis.org

1, 2, 4, 6, 8, 9, 12, 15, 16, 18, 20, 21, 24, 30, 32, 33, 36, 39, 40, 42, 45, 48, 50, 51, 54, 56, 57, 60, 64, 66, 69, 70, 72, 75, 78, 80, 81, 84, 87, 90, 93, 96, 100, 102, 105, 108, 110, 111, 112, 114, 120, 123, 125, 126, 128, 129, 130, 132, 135, 138, 140, 141
Offset: 1

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

Also numbers m whose prime indices have a submultiset summing to bigomega(m).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of the partitions counted by A367212.

Examples

			The prime indices of 24 are {1,1,1,2} with submultiset {1,1,2} summing to 4, so 24 is in the sequence.
The terms together with their prime indices begin:
    1: {}
    2: {1}
    4: {1,1}
    6: {1,2}
    8: {1,1,1}
    9: {2,2}
   12: {1,1,2}
   15: {2,3}
   16: {1,1,1,1}
   18: {1,2,2}
   20: {1,1,3}
   21: {2,4}
   24: {1,1,1,2}
   30: {1,2,3}
   32: {1,1,1,1,1}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000700 counts self-conjugate partitions, ranks A088902.
A002865 counts partitions whose length is a part, ranks A325761.
A005117 ranks strict integer partitions, counted by A000009.
A066208 ranks partitions into odd parts, also counted by A000009.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A126796 counts complete partitions, ranks A325781.
A229816 counts partitions whose length is not a part, ranks A367107.
A237668 counts sum-full partitions, ranks A364532.
Triangles:
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365543 counts partitions of n with a subset-sum k, strict A365661.
A365658 counts partitions by number of subset-sums, strict A365832.

Programs

  • Mathematica
    prix[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p], {k}]]]];
    Select[Range[100], MemberQ[Total/@prix/@Divisors[#], PrimeOmega[#]]&]

A363226 Number of strict integer partitions of n containing some three possibly equal parts (a,b,c) such that a + b = c. A variation of sum-full strict partitions.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 1, 2, 3, 5, 4, 6, 7, 11, 11, 16, 18, 26, 29, 34, 42, 51, 62, 72, 84, 101, 119, 142, 166, 191, 226, 262, 300, 354, 405, 467, 540, 623, 705, 807, 927, 1060, 1206, 1369, 1551, 1760, 1998, 2248, 2556, 2861, 3236, 3628, 4100, 4587, 5152, 5756
Offset: 0

Views

Author

Gus Wiseman, Jul 19 2023

Keywords

Comments

Note that, by this definition, the partition (2,1) is sum-full, because (1,1,2) is a triple satisfying a + b = c.

Examples

			The a(3) = 1 through a(15) = 11 partitions (A=10, B=11, C=12):
  21  .  .  42   421  431  63   532   542   84    643   653   A5
            321       521  432  541   632   642   742   743   843
                           621  631   821   651   841   752   942
                                721   5321  921   A21   761   C21
                                4321        5421  5431  842   6432
                                            6321  6421  B21   6531
                                                  7321  5432  7431
                                                        6431  7521
                                                        6521  8421
                                                        7421  9321
                                                        8321  54321
		

Crossrefs

For subsets of {1..n} we have A093971 (sum-full sets), complement A007865.
The non-strict version is A363225, ranks A364348 (complement A364347).
The complement is counted by A364346, non-strict A364345.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A236912 counts sum-free partitions not re-using parts, complement A237113.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]!={}&]],{n,0,30}]
  • Python
    from itertools import combinations_with_replacement
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A363226(n): return sum(1 for p in partitions(n) if max(p.values(),default=0)==1 and any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # Chai Wah Wu, Sep 20 2023

Extensions

a(31)-a(56) from Chai Wah Wu, Sep 20 2023

A367212 Number of integer partitions of n whose length (number of parts) is equal to the sum of some submultiset.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 11, 15, 22, 30, 43, 58, 80, 106, 143, 186, 248, 318, 417, 530, 684, 863, 1103, 1379, 1741, 2162, 2707, 3339, 4145, 5081, 6263, 7640, 9357, 11350, 13822, 16692, 20214, 24301, 29300, 35073, 42085, 50208, 59981, 71294, 84866, 100509, 119206
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2023

Keywords

Comments

Or, partitions whose length is a subset-sum of the parts.

Examples

			The partition (3,2,1,1) has submultisets (3,1) or (2,1,1) with sum 4, so is counted under a(7).
The a(1) = 1 through a(8) = 15 partitions:
  (1)  (11)  (21)   (22)    (32)     (42)      (52)       (62)
             (111)  (211)   (221)    (321)     (322)      (332)
                    (1111)  (311)    (2211)    (331)      (431)
                            (2111)   (3111)    (421)      (521)
                            (11111)  (21111)   (2221)     (2222)
                                     (111111)  (3211)     (3221)
                                               (4111)     (3311)
                                               (22111)    (4211)
                                               (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A088809/A093971/A364534 count certain types of sum-full subsets.
A108917 counts knapsack partitions, non-knapsack A366754.
A126796 counts complete partitions, incomplete A365924.
A237668 counts sum-full partitions, sum-free A237667.
A304792 counts subset-sums of partitions, strict A365925.
Triangles:
A008284 counts partitions by length, strict A008289.
A365381 counts sets with a subset summing to k, complement A366320.
A365543 counts partitions of n with a subset-sum k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]

A367214 Number of strict integer partitions of n whose length (number of parts) is equal to the sum of some submultiset.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 2, 3, 4, 5, 5, 7, 8, 10, 12, 14, 17, 21, 25, 30, 36, 43, 51, 60, 71, 83, 97, 113, 132, 153, 178, 205, 238, 272, 315, 360, 413, 471, 539, 613, 698, 792, 899, 1018, 1153, 1302, 1470, 1658, 1867, 2100, 2362, 2652, 2974, 3335, 3734, 4178, 4672
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Comments

These partitions have Heinz numbers A367224 /\ A005117.

Examples

			The strict partition (6,4,3,2,1) has submultisets {1,4} and {2,3} with sum 5 so is counted under a(16).
The a(1) = 1 through a(10) = 5 strict partitions:
  (1)  .  (2,1)  .  (3,2)  (4,2)    (5,2)    (6,2)    (7,2)    (8,2)
                           (3,2,1)  (4,2,1)  (4,3,1)  (4,3,2)  (5,3,2)
                                             (5,2,1)  (5,3,1)  (6,3,1)
                                                      (6,2,1)  (7,2,1)
                                                               (4,3,2,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A088809/A093971/A364534 count certain types of sum-full subsets.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A275972 counts strict knapsack partitions, non-strict A108917.
A364272 counts sum-full strict partitions, sum-free A364349.
A365925 counts subset-sums of strict partitions, non-strict A304792.
Triangles:
A008289 counts strict partitions by length, non-strict A008284.
A365661 counts strict partitions with a subset-sum k, non-strict A365543.
A365832 counts strict partitions by subset-sums, non-strict A365658.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]

A367218 Number of integer partitions of n whose length can be written as a nonnegative linear combination of the distinct parts.

Original entry on oeis.org

1, 1, 1, 2, 4, 6, 8, 13, 18, 26, 35, 50, 66, 92, 119, 160, 208, 275, 350, 457, 579, 742, 933, 1185, 1476, 1859, 2300, 2868, 3531, 4371, 5343, 6575, 8003, 9776, 11842, 14394, 17351, 20987, 25191, 30315, 36257, 43448, 51753, 61776, 73342, 87192, 103184, 122253, 144211
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

The Heinz numbers of these partitions are given by A367226.

Examples

			The partition (4,2,1) has 3 = (2)+(1) or 3 = (1+1+1) so is counted under a(7).
The a(1) = 1 through a(7) = 13 partitions:
  (1)  (11)  (21)   (22)    (32)     (42)      (52)
             (111)  (31)    (41)     (51)      (61)
                    (211)   (221)    (321)     (322)
                    (1111)  (311)    (411)     (331)
                            (2111)   (2211)    (421)
                            (11111)  (3111)    (511)
                                     (21111)   (2221)
                                     (111111)  (3211)
                                               (4111)
                                               (22111)
                                               (31111)
                                               (211111)
                                               (1111111)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A008284 counts partitions by length, strict A008289.
A240855 counts strict partitions whose length is a part, complement A240861.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], combs[Length[#], Union[#]]!={}&]], {n,0,15}]

Extensions

a(31)-a(48) from Chai Wah Wu, Nov 15 2023

A367220 Number of strict integer partitions of n whose length (number of parts) can be written as a nonnegative linear combination of the parts.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 3, 3, 4, 5, 7, 7, 10, 11, 15, 17, 22, 25, 32, 37, 46, 53, 65, 75, 90, 105, 124, 143, 168, 193, 224, 258, 297, 340, 390, 446, 509, 580, 660, 751, 852, 967, 1095, 1240, 1401, 1584, 1786, 2015, 2269, 2554, 2869, 3226, 3617, 4056, 4541, 5084
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

The non-strict version is A367218.

Examples

			The a(3) = 1 through a(10) = 7 strict partitions:
  (2,1)  (3,1)  (3,2)  (4,2)    (5,2)    (6,2)    (7,2)    (8,2)
                (4,1)  (5,1)    (6,1)    (7,1)    (8,1)    (9,1)
                       (3,2,1)  (4,2,1)  (4,3,1)  (4,3,2)  (5,3,2)
                                         (5,2,1)  (5,3,1)  (5,4,1)
                                                  (6,2,1)  (6,3,1)
                                                           (7,2,1)
                                                           (4,3,2,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]!={}&]], {n,0,15}]

A363260 Number of integer partitions of n with parts disjoint from first differences of parts, meaning no part is the difference of two consecutive parts.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 7, 10, 13, 17, 21, 28, 35, 46, 57, 70, 87, 110, 130, 165, 198, 238, 285, 349, 410, 498, 583, 702, 819, 983, 1136, 1353, 1570, 1852, 2137, 2520, 2898, 3390, 3891, 4540, 5191, 6028, 6889, 7951, 9082, 10450, 11884, 13650, 15508, 17728, 20113
Offset: 0

Views

Author

Gus Wiseman, Jul 19 2023

Keywords

Examples

			The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (31)    (41)     (51)      (52)       (53)
                    (1111)  (311)    (222)     (61)       (62)
                            (11111)  (411)     (322)      (71)
                                     (3111)    (331)      (332)
                                     (111111)  (511)      (611)
                                               (4111)     (2222)
                                               (31111)    (3311)
                                               (1111111)  (5111)
                                                          (41111)
                                                          (311111)
                                                          (11111111)
		

Crossrefs

For length instead of differences we have A229816, strict A240861.
For all differences of pairs parts we have A364345.
For subsets of {1..n} instead of partitions we have A364463.
The strict case is A364464.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A323092 counts double-free partitions, ranks A320340.
A325325 counts partitions with distinct first-differences.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Intersection[#,-Differences[#]]=={}&]],{n,0,30}]
  • Python
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A363260(n): return sum(1 for s,p in map(lambda x: (x[0],tuple(sorted(Counter(x[1]).elements()))), partitions(n,size=True)) if set(p).isdisjoint({p[i+1]-p[i] for i in range(s-1)})) # Chai Wah Wu, Sep 26 2023

A364461 Positive integers such that if prime(a)*prime(b) is a divisor, prime(a+b) is not.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2023

Keywords

Comments

Also Heinz numbers of a type of sum-free partitions not allowing re-used parts, counted by A236912.

Examples

			The prime indices of 198 are {1,2,2,5}, which is sum-free even though it is not knapsack (A299702, A299729), so 198 is in the sequence.
		

Crossrefs

Subsets of this type are counted by A085489, with re-usable parts A007865.
Subsets not of this type are counted by A093971, w/ re-usable parts A088809.
Partitions of this type are counted by A236912.
Allowing parts to be re-used gives A364347, counted by A364345.
The complement allowing parts to be re-used is A364348, counted by A363225.
The non-binary version allowing re-used parts is counted by A364350.
The complement is A364462, counted by A237113.
The non-binary version is A364531, counted by A237667, complement A364532.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#], Total/@Subsets[prix[#],{2}]]=={}&]

A364462 Positive integers having a divisor of the form prime(a)*prime(b) such that prime(a+b) is also a divisor.

Original entry on oeis.org

12, 24, 30, 36, 48, 60, 63, 70, 72, 84, 90, 96, 108, 120, 126, 132, 140, 144, 150, 154, 156, 165, 168, 180, 189, 192, 204, 210, 216, 228, 240, 252, 264, 270, 273, 276, 280, 286, 288, 300, 308, 312, 315, 324, 325, 330, 336, 348, 350, 360, 372, 378, 384, 390
Offset: 1

Views

Author

Gus Wiseman, Jul 29 2023

Keywords

Comments

Also Heinz numbers of a type of sum-full partitions not allowing re-used parts, counted by A237113.
No partitions of this type are knapsack (A299702, A299729).
All multiples of terms are terms. - Robert Israel, Aug 30 2023

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   24: {1,1,1,2}
   30: {1,2,3}
   36: {1,1,2,2}
   48: {1,1,1,1,2}
   60: {1,1,2,3}
   63: {2,2,4}
   70: {1,3,4}
   72: {1,1,1,2,2}
   84: {1,1,2,4}
   90: {1,2,2,3}
   96: {1,1,1,1,1,2}
  108: {1,1,2,2,2}
  120: {1,1,1,2,3}
  126: {1,2,2,4}
  132: {1,1,2,5}
  140: {1,1,3,4}
  144: {1,1,1,1,2,2}
		

Crossrefs

Subsets not of this type are counted by A085489, w/ re-usable parts A007865.
Subsets of this type are counted by A088809, with re-usable parts A093971.
Partitions not of this type are counted by A236912.
Partitions of this type are counted by A237113.
Subset of A299729.
The complement with re-usable parts is A364347, counted by A364345.
With re-usable parts we have A364348, counted by A363225 (strict A363226).
The complement is A364461.
The non-binary complement is A364531, counted by A237667.
The non-binary version is A364532, see also A364350.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.

Programs

  • Maple
    filter:= proc(n) local F, i,j,m;
      F:= map(t -> `if`(t[2]>=2, numtheory:-pi(t[1])$2, numtheory:-pi(t[1])), ifactors(n)[2]);
      for i from 1 to nops(F)-1 do for j from 1 to i-1 do
        if member(F[i]+F[j],F) then return true fi
      od od;
      false
    end proc:
    select(filter, [$1..1000]); # Robert Israel, Aug 30 2023
  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#], Total/@Subsets[prix[#],{2}]]!={}&]
Previous Showing 11-20 of 49 results. Next