cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 25 results. Next

A363226 Number of strict integer partitions of n containing some three possibly equal parts (a,b,c) such that a + b = c. A variation of sum-full strict partitions.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 1, 2, 3, 5, 4, 6, 7, 11, 11, 16, 18, 26, 29, 34, 42, 51, 62, 72, 84, 101, 119, 142, 166, 191, 226, 262, 300, 354, 405, 467, 540, 623, 705, 807, 927, 1060, 1206, 1369, 1551, 1760, 1998, 2248, 2556, 2861, 3236, 3628, 4100, 4587, 5152, 5756
Offset: 0

Views

Author

Gus Wiseman, Jul 19 2023

Keywords

Comments

Note that, by this definition, the partition (2,1) is sum-full, because (1,1,2) is a triple satisfying a + b = c.

Examples

			The a(3) = 1 through a(15) = 11 partitions (A=10, B=11, C=12):
  21  .  .  42   421  431  63   532   542   84    643   653   A5
            321       521  432  541   632   642   742   743   843
                           621  631   821   651   841   752   942
                                721   5321  921   A21   761   C21
                                4321        5421  5431  842   6432
                                            6321  6421  B21   6531
                                                  7321  5432  7431
                                                        6431  7521
                                                        6521  8421
                                                        7421  9321
                                                        8321  54321
		

Crossrefs

For subsets of {1..n} we have A093971 (sum-full sets), complement A007865.
The non-strict version is A363225, ranks A364348 (complement A364347).
The complement is counted by A364346, non-strict A364345.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A236912 counts sum-free partitions not re-using parts, complement A237113.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&Select[Tuples[#,3],#[[1]]+#[[2]]==#[[3]]&]!={}&]],{n,0,30}]
  • Python
    from itertools import combinations_with_replacement
    from collections import Counter
    from sympy.utilities.iterables import partitions
    def A363226(n): return sum(1 for p in partitions(n) if max(p.values(),default=0)==1 and any(q[0]+q[1]==q[2] for q in combinations_with_replacement(sorted(Counter(p).elements()),3))) # Chai Wah Wu, Sep 20 2023

Extensions

a(31)-a(56) from Chai Wah Wu, Sep 20 2023

A367214 Number of strict integer partitions of n whose length (number of parts) is equal to the sum of some submultiset.

Original entry on oeis.org

1, 1, 0, 1, 0, 1, 2, 2, 3, 4, 5, 5, 7, 8, 10, 12, 14, 17, 21, 25, 30, 36, 43, 51, 60, 71, 83, 97, 113, 132, 153, 178, 205, 238, 272, 315, 360, 413, 471, 539, 613, 698, 792, 899, 1018, 1153, 1302, 1470, 1658, 1867, 2100, 2362, 2652, 2974, 3335, 3734, 4178, 4672
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Comments

These partitions have Heinz numbers A367224 /\ A005117.

Examples

			The strict partition (6,4,3,2,1) has submultisets {1,4} and {2,3} with sum 5 so is counted under a(16).
The a(1) = 1 through a(10) = 5 strict partitions:
  (1)  .  (2,1)  .  (3,2)  (4,2)    (5,2)    (6,2)    (7,2)    (8,2)
                           (3,2,1)  (4,2,1)  (4,3,1)  (4,3,2)  (5,3,2)
                                             (5,2,1)  (5,3,1)  (6,3,1)
                                                      (6,2,1)  (7,2,1)
                                                               (4,3,2,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A088809/A093971/A364534 count certain types of sum-full subsets.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A275972 counts strict knapsack partitions, non-strict A108917.
A364272 counts sum-full strict partitions, sum-free A364349.
A365925 counts subset-sums of strict partitions, non-strict A304792.
Triangles:
A008289 counts strict partitions by length, non-strict A008284.
A365661 counts strict partitions with a subset-sum k, non-strict A365543.
A365832 counts strict partitions by subset-sums, non-strict A365658.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]

A367215 Number of strict integer partitions of n whose length (number of parts) is not equal to the sum of any subset.

Original entry on oeis.org

0, 0, 1, 1, 2, 2, 2, 3, 3, 4, 5, 7, 8, 10, 12, 15, 18, 21, 25, 29, 34, 40, 46, 53, 62, 71, 82, 95, 109, 124, 143, 162, 185, 210, 240, 270, 308, 347, 393, 443, 500, 562, 634, 711, 798, 895, 1002, 1120, 1252, 1397, 1558, 1735, 1930, 2146, 2383, 2644, 2930, 3245
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Comments

These partitions have Heinz numbers A367225 /\ A005117.

Examples

			The a(2) = 1 through a(11) = 7 strict partitions:
  (2)  (3)  (4)    (5)    (6)    (7)    (8)    (9)    (10)     (11)
            (3,1)  (4,1)  (5,1)  (4,3)  (5,3)  (5,4)  (6,4)    (6,5)
                                 (6,1)  (7,1)  (6,3)  (7,3)    (7,4)
                                               (8,1)  (9,1)    (8,3)
                                                      (5,4,1)  (10,1)
                                                               (5,4,2)
                                                               (6,4,1)
The a(2) = 1 through a(15) = 15 strict partitions (A..F = 10..15):
  2  3  4   5   6   7   8   9   A    B    C    D    E     F
        31  41  51  43  53  54  64   65   75   76   86    87
                    61  71  63  73   74   84   85   95    96
                            81  91   83   93   94   A4    A5
                                541  A1   B1   A3   B3    B4
                                     542  642  C1   D1    C3
                                     641  651  652  752   E1
                                          741  742  761   654
                                               751  842   762
                                               841  851   852
                                                    941   861
                                                    6521  942
                                                          951
                                                          A41
                                                          7521
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A007865/A085489/A151897 count certain types of sum-free subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A188431 counts complete strict partitions, incomplete A365831.
A237667 counts sum-free partitions, ranks A364531.
A240861 counts strict partitions with length not a part, complement A240855.
A275972 counts strict knapsack partitions, non-strict A108917.
A364349 counts sum-free strict partitions, sum-full A364272.
Triangles:
A008289 counts strict partitions by length, non-strict A008284.
A365661 counts strict partitions with a subset-sum k, non-strict A365543.
A365663 counts strict partitions without a subset-sum k, non-strict A046663.
A365832 counts strict partitions by subset-sums, non-strict A365658.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,30}]

A367217 Number of subsets of {1..n} whose cardinality is not equal to the sum of any subset.

Original entry on oeis.org

0, 0, 1, 3, 6, 12, 24, 46, 87, 164, 308, 577, 1080, 2021, 3779, 7058, 13166, 24533, 45674, 84978, 158026, 293737, 545747, 1013467, 1881032, 3489303, 6468910, 11985988, 22195905, 41080751, 75994642, 140514019, 259693004, 479749492, 885910870, 1635281386
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Examples

			The a(2) = 1 through a(5) = 12 subsets:
  {2}  {2}    {2}    {2}
       {3}    {3}    {3}
       {1,3}  {4}    {4}
              {1,3}  {5}
              {1,4}  {1,3}
              {3,4}  {1,4}
                     {1,5}
                     {3,4}
                     {3,5}
                     {4,5}
                     {1,4,5}
                     {2,4,5}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A229816 counts partitions whose length is not a part, complement A002865.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A237667 counts sum-free partitions, ranks A364531.
Triangles:
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts sets containing two distinct elements summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,15}]

Formula

a(n) = 2^n - A367216(n). - Chai Wah Wu, Nov 14 2023

Extensions

a(16)-a(28) from Chai Wah Wu, Nov 14 2023
a(29)-a(35) from Max Alekseyev, Feb 25 2025

A367220 Number of strict integer partitions of n whose length (number of parts) can be written as a nonnegative linear combination of the parts.

Original entry on oeis.org

1, 1, 0, 1, 1, 2, 3, 3, 4, 5, 7, 7, 10, 11, 15, 17, 22, 25, 32, 37, 46, 53, 65, 75, 90, 105, 124, 143, 168, 193, 224, 258, 297, 340, 390, 446, 509, 580, 660, 751, 852, 967, 1095, 1240, 1401, 1584, 1786, 2015, 2269, 2554, 2869, 3226, 3617, 4056, 4541, 5084
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

The non-strict version is A367218.

Examples

			The a(3) = 1 through a(10) = 7 strict partitions:
  (2,1)  (3,1)  (3,2)  (4,2)    (5,2)    (6,2)    (7,2)    (8,2)
                (4,1)  (5,1)    (6,1)    (7,1)    (8,1)    (9,1)
                       (3,2,1)  (4,2,1)  (4,3,1)  (4,3,2)  (5,3,2)
                                         (5,2,1)  (5,3,1)  (5,4,1)
                                                  (6,2,1)  (6,3,1)
                                                           (7,2,1)
                                                           (4,3,2,1)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]!={}&]], {n,0,15}]

A367221 Number of strict integer partitions of n whose length (number of parts) cannot be written as a nonnegative linear combination of the parts.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 1, 2, 2, 3, 3, 5, 5, 7, 7, 10, 10, 13, 14, 17, 18, 23, 24, 29, 32, 37, 41, 49, 54, 63, 72, 82, 93, 108, 122, 139, 159, 180, 204, 231, 261, 293, 331, 370, 415, 464, 518, 575, 641, 710, 789, 871, 965, 1064, 1177, 1294, 1428, 1569, 1729, 1897
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Comments

The non-strict version is A367219.

Examples

			The a(2) = 1 through a(16) = 10 strict partitions (A..G = 10..16):
  2  3  4  5  6  7   8   9   A   B    C    D    E    F    G
                 43  53  54  64  65   75   76   86   87   97
                         63  73  74   84   85   95   96   A6
                                 83   93   94   A4   A5   B5
                                 542  642  A3   B3   B4   C4
                                           652  752  C3   D3
                                           742  842  654  754
                                                     762  862
                                                     852  952
                                                     942  A42
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts integer partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A124506 appears to count combination-free subsets, differences of A326083.
A188431 counts complete strict partitions, incomplete A365831.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
Triangles:
A008284 counts partitions by length, strict A008289.
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365541 counts subsets containing two distinct elements summing to k.
A365658 counts partitions by number of subset-sums, strict A365832.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&combs[Length[#], Union[#]]=={}&]], {n,0,30}]

A367227 Numbers m whose prime indices have no nonnegative linear combination equal to bigomega(m).

Original entry on oeis.org

3, 5, 7, 11, 13, 17, 19, 23, 25, 27, 29, 31, 35, 37, 41, 43, 47, 49, 53, 55, 59, 61, 63, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 95, 97, 99, 101, 103, 107, 109, 113, 115, 117, 119, 121, 127, 131, 133, 137, 139, 143, 145, 147, 149, 151, 153, 155, 157, 161, 163
Offset: 1

Views

Author

Gus Wiseman, Nov 15 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
These are the Heinz numbers of the partitions counted by A367219.

Examples

			The prime indices of 24 are {1,1,1,2} with (1+1+1+1) = 4 or (1+1)+(2) = 4 or (2+2) = 4, so 24 is not in the sequence.
The terms together with their prime indices begin:
     3: {2}        43: {14}        85: {3,7}
     5: {3}        47: {15}        89: {24}
     7: {4}        49: {4,4}       91: {4,6}
    11: {5}        53: {16}        95: {3,8}
    13: {6}        55: {3,5}       97: {25}
    17: {7}        59: {17}        99: {2,2,5}
    19: {8}        61: {18}       101: {26}
    23: {9}        63: {2,2,4}    103: {27}
    25: {3,3}      65: {3,6}      107: {28}
    27: {2,2,2}    67: {19}       109: {29}
    29: {10}       71: {20}       113: {30}
    31: {11}       73: {21}       115: {3,9}
    35: {3,4}      77: {4,5}      117: {2,2,6}
    37: {12}       79: {22}       119: {4,7}
    41: {13}       83: {23}       121: {5,5}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000700 counts self-conjugate partitions, ranks A088902.
A112798 lists prime indices, reverse A296150, length A001222, sum A056239.
A124506 appears to count combination-free subsets, differences of A326083.
A229816 counts partitions whose length is not a part, ranks A367107.
A304792 counts subset-sums of partitions, strict A365925.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p], {k}]]]];
    combs[n_,y_]:=With[{s=Table[{k,i}, {k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Select[Range[100], combs[PrimeOmega[#], Union[prix[#]]]=={}&]

A364461 Positive integers such that if prime(a)*prime(b) is a divisor, prime(a+b) is not.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 35, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 61, 62, 64, 65, 66, 67, 68, 69, 71, 73, 74, 75, 76
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2023

Keywords

Comments

Also Heinz numbers of a type of sum-free partitions not allowing re-used parts, counted by A236912.

Examples

			The prime indices of 198 are {1,2,2,5}, which is sum-free even though it is not knapsack (A299702, A299729), so 198 is in the sequence.
		

Crossrefs

Subsets of this type are counted by A085489, with re-usable parts A007865.
Subsets not of this type are counted by A093971, w/ re-usable parts A088809.
Partitions of this type are counted by A236912.
Allowing parts to be re-used gives A364347, counted by A364345.
The complement allowing parts to be re-used is A364348, counted by A363225.
The non-binary version allowing re-used parts is counted by A364350.
The complement is A364462, counted by A237113.
The non-binary version is A364531, counted by A237667, complement A364532.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{}, Flatten[Cases[FactorInteger[n], {p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#], Total/@Subsets[prix[#],{2}]]=={}&]

A364348 Numbers with two possibly equal divisors prime(a) and prime(b) such that prime(a+b) is also a divisor.

Original entry on oeis.org

6, 12, 18, 21, 24, 30, 36, 42, 48, 54, 60, 63, 65, 66, 70, 72, 78, 84, 90, 96, 102, 105, 108, 114, 120, 126, 130, 132, 133, 138, 140, 144, 147, 150, 154, 156, 162, 165, 168, 174, 180, 186, 189, 192, 195, 198, 204, 210, 216, 222, 228, 231, 234, 240, 246, 252
Offset: 1

Views

Author

Gus Wiseman, Jul 27 2023

Keywords

Comments

Or numbers with a prime index equal to the sum of two others, allowing re-used parts.
Also Heinz numbers of a type of sum-free partitions counted by A363225.

Examples

			We have 6 because prime(1) and prime(1) are both divisors of 6, and prime(1+1) is also.
The terms together with their prime indices begin:
   6: {1,2}
  12: {1,1,2}
  18: {1,2,2}
  21: {2,4}
  24: {1,1,1,2}
  30: {1,2,3}
  36: {1,1,2,2}
  42: {1,2,4}
  48: {1,1,1,1,2}
  54: {1,2,2,2}
  60: {1,1,2,3}
  63: {2,2,4}
  65: {3,6}
  66: {1,2,5}
  70: {1,3,4}
  72: {1,1,1,2,2}
		

Crossrefs

Subsets of this type are counted by A093971, complement A007865.
Partitions of this type are counted by A363225, strict A363226.
The complement is A364347, counted by A364345.
The complement without re-using parts is A364461, counted by A236912.
Without re-using parts we have A364462, counted by A237113.
A001222 counts prime indices.
A108917 counts knapsack partitions, ranks A299702.
A112798 lists prime indices, sum A056239.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],Intersection[prix[#],Total/@Tuples[prix[#],2]]!={}&]

A364533 Number of strict integer partitions of n containing the sum of no pair of distinct parts. A variation of sum-free strict partitions.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 3, 5, 5, 8, 7, 11, 11, 15, 15, 21, 22, 28, 32, 38, 40, 51, 55, 65, 74, 83, 94, 111, 119, 136, 160, 174, 196, 222, 252, 273, 315, 341, 391, 425, 477, 518, 602, 636, 719, 782, 886, 944, 1073, 1140, 1302, 1380, 1553, 1651, 1888, 1995, 2224, 2370
Offset: 0

Views

Author

Gus Wiseman, Aug 02 2023

Keywords

Examples

			The a(1) = 1 through a(12) = 11 partitions (A..C = 10..12):
  1   2   3    4    5    6    7     8     9     A     B     C
          21   31   32   42   43    53    54    64    65    75
                    41   51   52    62    63    73    74    84
                              61    71    72    82    83    93
                              421   521   81    91    92    A2
                                          432   631   A1    B1
                                          531   721   542   543
                                          621         632   732
                                                      641   741
                                                      731   831
                                                      821   921
		

Crossrefs

For subsets of {1..n} we have A085489, complement A088809.
The non-strict version is A236912, complement A237113, ranked by A364461.
Allowing re-used parts gives A364346.
The non-binary version is A364349, non-strict A237667 (complement A237668).
The linear combination-free version is A364350.
The complement in strict partitions is A364670, w/ re-used parts A363226.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972.
A151897 counts sum-free subsets, complement A364534.
A323092 counts double-free partitions, ranks A320340.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#,{2}]] == {}&]],{n,0,30}]
Previous Showing 11-20 of 25 results. Next