cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 32 results. Next

A367212 Number of integer partitions of n whose length (number of parts) is equal to the sum of some submultiset.

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 6, 11, 15, 22, 30, 43, 58, 80, 106, 143, 186, 248, 318, 417, 530, 684, 863, 1103, 1379, 1741, 2162, 2707, 3339, 4145, 5081, 6263, 7640, 9357, 11350, 13822, 16692, 20214, 24301, 29300, 35073, 42085, 50208, 59981, 71294, 84866, 100509, 119206
Offset: 0

Views

Author

Gus Wiseman, Nov 11 2023

Keywords

Comments

Or, partitions whose length is a subset-sum of the parts.

Examples

			The partition (3,2,1,1) has submultisets (3,1) or (2,1,1) with sum 4, so is counted under a(7).
The a(1) = 1 through a(8) = 15 partitions:
  (1)  (11)  (21)   (22)    (32)     (42)      (52)       (62)
             (111)  (211)   (221)    (321)     (322)      (332)
                    (1111)  (311)    (2211)    (331)      (431)
                            (2111)   (3111)    (421)      (521)
                            (11111)  (21111)   (2221)     (2222)
                                     (111111)  (3211)     (3221)
                                               (4111)     (3311)
                                               (22111)    (4211)
                                               (31111)    (22211)
                                               (211111)   (32111)
                                               (1111111)  (41111)
                                                          (221111)
                                                          (311111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000041 counts partitions, strict A000009.
A002865 counts partitions whose length is a part, complement A229816.
A088809/A093971/A364534 count certain types of sum-full subsets.
A108917 counts knapsack partitions, non-knapsack A366754.
A126796 counts complete partitions, incomplete A365924.
A237668 counts sum-full partitions, sum-free A237667.
A304792 counts subset-sums of partitions, strict A365925.
Triangles:
A008284 counts partitions by length, strict A008289.
A365381 counts sets with a subset summing to k, complement A366320.
A365543 counts partitions of n with a subset-sum k, strict A365661.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]

A367216 Number of subsets of {1..n} whose cardinality is equal to the sum of some subset.

Original entry on oeis.org

1, 2, 3, 5, 10, 20, 40, 82, 169, 348, 716, 1471, 3016, 6171, 12605, 25710, 52370, 106539, 216470, 439310, 890550, 1803415, 3648557, 7375141, 14896184, 30065129, 60639954, 122231740, 246239551, 495790161, 997747182, 2006969629, 4035274292, 8110185100, 16293958314, 32724456982
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Examples

			The a(0) = 1 through a(4) = 10 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {1,2}  {1,2}    {1,2}
                  {2,3}    {2,3}
                  {1,2,3}  {2,4}
                           {1,2,3}
                           {1,2,4}
                           {1,3,4}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A002865 counts partitions whose length is a part, complement A229816.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A237668 counts sum-full partitions, ranks A364532.
A240855 counts strict partitions whose length is a part, complement A240861.
A364272 counts sum-full strict partitions, sum-free A364349.
A365046 counts combination-full subsets, differences of A364914.
Triangles:
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts sets containing two distinct elements summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], MemberQ[Total/@Subsets[#], Length[#]]&]], {n,0,10}]

Formula

a(n) = 2^n - A367217(n). - Chai Wah Wu, Nov 14 2023

Extensions

a(16)-a(28) from Chai Wah Wu, Nov 14 2023
a(29)-a(35) from Max Alekseyev, Feb 25 2025

A367217 Number of subsets of {1..n} whose cardinality is not equal to the sum of any subset.

Original entry on oeis.org

0, 0, 1, 3, 6, 12, 24, 46, 87, 164, 308, 577, 1080, 2021, 3779, 7058, 13166, 24533, 45674, 84978, 158026, 293737, 545747, 1013467, 1881032, 3489303, 6468910, 11985988, 22195905, 41080751, 75994642, 140514019, 259693004, 479749492, 885910870, 1635281386
Offset: 0

Views

Author

Gus Wiseman, Nov 12 2023

Keywords

Examples

			The a(2) = 1 through a(5) = 12 subsets:
  {2}  {2}    {2}    {2}
       {3}    {3}    {3}
       {1,3}  {4}    {4}
              {1,3}  {5}
              {1,4}  {1,3}
              {3,4}  {1,4}
                     {1,5}
                     {3,4}
                     {3,5}
                     {4,5}
                     {1,4,5}
                     {2,4,5}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A229816 counts partitions whose length is not a part, complement A002865.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A237667 counts sum-free partitions, ranks A364531.
Triangles:
A046663 counts partitions of n without a subset-sum k, strict A365663.
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts sets containing two distinct elements summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#], Length[#]]&]], {n,0,15}]

Formula

a(n) = 2^n - A367216(n). - Chai Wah Wu, Nov 14 2023

Extensions

a(16)-a(28) from Chai Wah Wu, Nov 14 2023
a(29)-a(35) from Max Alekseyev, Feb 25 2025

A367222 Number of subsets of {1..n} whose cardinality can be written as a nonnegative linear combination of the elements.

Original entry on oeis.org

1, 2, 3, 6, 12, 24, 49, 101, 207, 422, 859, 1747, 3548, 7194, 14565, 29452, 59496, 120086, 242185, 488035, 982672, 1977166, 3975508, 7989147, 16047464, 32221270, 64674453, 129775774, 260337978, 522124197, 1046911594, 2098709858, 4206361369, 8429033614, 16887728757, 33829251009, 67755866536, 135687781793, 271693909435
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Examples

			The set {1,2,4} has 3 = (2)+(1) or 3 = (1+1+1) so is counted under a(4).
The a(0) = 1 through a(4) = 12 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {1,2}  {1,2}    {1,2}
                  {1,3}    {1,3}
                  {2,3}    {1,4}
                  {1,2,3}  {2,3}
                           {2,4}
                           {1,2,3}
                           {1,2,4}
                           {1,3,4}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A002865 counts partitions whose length is a part, complement A229816.
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A326020 counts complete subsets.
A365046 counts combination-full subsets, differences of A364914.
Triangles:
A008284 counts partitions by length, strict A008289.
A365381 counts sets with a subset summing to k, without A366320.
A365541 counts subsets containing two distinct elements summing to k.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]], combs[Length[#], Union[#]]!={}&]], {n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A367222(n):
        c, mlist = 1, []
        for m in range(1,n+1):
            t = set()
            for p in partitions(m):
                t.add(tuple(sorted(p.keys())))
            mlist.append([set(d) for d in t])
        for k in range(1,n+1):
            for w in combinations(range(1,n+1),k):
                ws = set(w)
                for s in mlist[k-1]:
                    if s <= ws:
                        c += 1
                        break
        return c # Chai Wah Wu, Nov 16 2023

Formula

a(n) = 2^n - A367223(n).

Extensions

a(13)-a(33) from Chai Wah Wu, Nov 15 2023
a(34)-a(38) from Max Alekseyev, Feb 25 2025

A367223 Number of subsets of {1..n} whose cardinality cannot be written as a nonnegative linear combination of the elements.

Original entry on oeis.org

0, 0, 1, 2, 4, 8, 15, 27, 49, 90, 165, 301, 548, 998, 1819, 3316, 6040, 10986, 19959, 36253, 65904, 119986, 218796, 399461, 729752, 1333162, 2434411, 4441954, 8097478, 14746715, 26830230, 48773790, 88605927, 160900978, 292140427, 530487359, 963610200, 1751171679, 3183997509
Offset: 0

Views

Author

Gus Wiseman, Nov 14 2023

Keywords

Examples

			3 cannot be written as a nonnegative linear combination of 2, 4, and 5, so {2,4,5} is counted under a(6).
The a(2) = 1 through a(6) = 15 subsets:
  {2}  {2}  {2}    {2}      {2}
       {3}  {3}    {3}      {3}
            {4}    {4}      {4}
            {3,4}  {5}      {5}
                   {3,4}    {6}
                   {3,5}    {3,4}
                   {4,5}    {3,5}
                   {2,4,5}  {3,6}
                            {4,5}
                            {4,6}
                            {5,6}
                            {2,4,5}
                            {2,4,6}
                            {2,5,6}
                            {4,5,6}
		

Crossrefs

The following sequences count and rank integer partitions and finite sets according to whether their length is a subset-sum or linear combination of the parts. The current sequence is starred.
sum-full sum-free comb-full comb-free
-------------------------------------------
A007865/A085489/A151897 count certain types of sum-free subsets.
A088809/A093971/A364534 count certain types of sum-full subsets.
A124506 appears to count combination-free subsets, differences of A326083.
A365046 counts combination-full subsets, differences of A364914.
Triangles:
A116861 counts positive linear combinations of strict partitions of k.
A364916 counts linear combinations of strict partitions of k.
A366320 counts subsets without a subset summing to k, with A365381.

Programs

  • Mathematica
    combs[n_,y_]:=With[{s=Table[{k,i},{k,y}, {i,0,Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
    Table[Length[Select[Subsets[Range[n]], combs[Length[#],Union[#]]=={}&]], {n,0,10}]
  • Python
    from itertools import combinations
    from sympy.utilities.iterables import partitions
    def A367223(n):
        c, mlist = 0, []
        for m in range(1,n+1):
            t = set()
            for p in partitions(m):
                t.add(tuple(sorted(p.keys())))
            mlist.append([set(d) for d in t])
        for k in range(1,n+1):
            for w in combinations(range(1,n+1),k):
                ws = set(w)
                for s in mlist[k-1]:
                    if s <= ws:
                        break
                else:
                    c += 1
        return c # Chai Wah Wu, Nov 16 2023

Formula

a(n) = 2^n - A367222(n).

Extensions

a(14)-a(33) from Chai Wah Wu, Nov 15 2023
a(34)-a(38) from Max Alekseyev, Feb 25 2025

A371792 Number of non-biquanimous subsets of {1..n}. Sets with no subset having the same sum as the complement.

Original entry on oeis.org

0, 1, 3, 6, 12, 24, 46, 90, 174, 337, 651, 1261, 2445, 4753, 9258, 18101, 35487, 69823, 137704, 272366, 539797, 1071969, 2132017, 4245964, 8464289, 16887427, 33713589, 67336900, 134542546, 268894341, 537515903, 1074640717, 2148733325, 4296686409, 8592299548, 17183084263, 34364120060, 68725368752, 137446915007, 274888501928, 549770021804, 1099530342380, 2199048203425, 4398079052052, 8796136153039, 17592241805077, 35184445671235
Offset: 0

Views

Author

Gus Wiseman, Apr 07 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			The subsets of S = {1,4,6,7} have distinct sums {0,1,4,5,6,7,8,10,11,12,13,14,17,18}. Since 9 is missing, S is counted under a(7).
The a(0) = 0 through a(4) = 12 subsets:
  .  {1}  {1}    {1}    {1}
          {2}    {2}    {2}
          {1,2}  {3}    {3}
                 {1,2}  {4}
                 {1,3}  {1,2}
                 {2,3}  {1,3}
                        {1,4}
                        {2,3}
                        {2,4}
                        {3,4}
                        {1,2,4}
                        {2,3,4}
		

Crossrefs

This is the "bi-" version of A371789, differences A371790.
The complement is counted by A371791, differences A232466.
First differences are A371793.
The complement is the "bi-" version of A371796, differences A371797.
A002219 aerated counts biquanimous partitions, ranks A357976.
A006827 and A371795 count non-biquanimous partitions, ranks A371731.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A237258 aerated counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371737 counts quanimous strict partitions, complement A371736.
A371781 lists numbers with biquanimous prime signature, complement A371782.
A371783 counts k-quanimous partitions.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[Subsets[Range[n]],Not@*biqQ]],{n,0,10}]

Extensions

a(16) onwards from Martin Fuller, Mar 21 2025

A365376 Number of subsets of {1..n} with a subset summing to n.

Original entry on oeis.org

1, 1, 2, 5, 10, 23, 47, 102, 207, 440, 890, 1847, 3730, 7648, 15400, 31332, 62922, 127234, 255374, 514269, 1030809, 2071344, 4148707, 8321937, 16660755, 33384685, 66812942, 133789638, 267685113, 535784667, 1071878216, 2144762139, 4290261840, 8583175092, 17168208940, 34342860713
Offset: 0

Views

Author

Gus Wiseman, Sep 08 2023

Keywords

Examples

			The a(1) = 1 through a(4) = 10 sets:
  {1}  {2}    {3}      {4}
       {1,2}  {1,2}    {1,3}
              {1,3}    {1,4}
              {2,3}    {2,4}
              {1,2,3}  {3,4}
                       {1,2,3}
                       {1,2,4}
                       {1,3,4}
                       {2,3,4}
                       {1,2,3,4}
		

Crossrefs

The case containing n is counted by A131577.
The version with re-usable parts is A365073.
The complement is counted by A365377.
The complement w/ re-usable parts is A365380.
Main diagonal of A365381.
A000009 counts sets summing to n, multisets A000041.
A000124 counts distinct possible sums of subsets of {1..n}.
A124506 appears to count combination-free subsets, differences of A326083.
A364350 counts combination-free strict partitions, complement A364839.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[Total/@Subsets[#],n]&]],{n,0,10}]
  • PARI
    isok(s, n) = forsubset(#s, ss, if (vecsum(vector(#ss, k, s[ss[k]])) == n, return(1)));
    a(n) = my(nb=0); forsubset(n, s, if (isok(s, n), nb++)); nb; \\ Michel Marcus, Sep 09 2023
    
  • Python
    from itertools import combinations, chain
    from sympy.utilities.iterables import partitions
    def A365376(n):
        if n == 0: return 1
        nset = set(range(1,n+1))
        s, c = [set(p) for p in partitions(n,m=n,k=n) if max(p.values(),default=1) == 1], 1
        for a in chain.from_iterable(combinations(nset,m) for m in range(2,n+1)):
            if sum(a) >= n:
                aset = set(a)
                for p in s:
                    if p.issubset(aset):
                        c += 1
                        break
        return c # Chai Wah Wu, Sep 09 2023

Formula

a(n) = 2^n-A365377(n). - Chai Wah Wu, Sep 09 2023

Extensions

a(16)-a(25) from Michel Marcus, Sep 09 2023
a(26)-a(32) from Chai Wah Wu, Sep 09 2023
a(33)-a(35) from Chai Wah Wu, Sep 10 2023

A366320 Irregular triangle read by rows where T(n,k) is the number of subsets of {1..n} without a subset summing to k.

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 3, 6, 6, 7, 8, 8, 6, 6, 9, 11, 11, 14, 14, 15, 16, 16, 12, 12, 9, 17, 17, 20, 20, 24, 27, 27, 30, 30, 31, 32, 32, 24, 24, 18, 17, 26, 31, 29, 35, 36, 43, 47, 50, 51, 56, 59, 59, 62, 62, 63
Offset: 1

Views

Author

Gus Wiseman, Oct 12 2023

Keywords

Examples

			Triangle begins:
   1
   2  2  3
   4  4  3  6  6  7
   8  8  6  6  9 11 11 14 14 15
  16 16 12 12  9 17 17 20 20 24 27 27 30 30 31
  32 32 24 24 18 17 26 31 29 35 36 43 47 50 51 56 59 59 62 62 63
Row n = 3 counts the following subsets:
  {}     {}     {}   {}     {}     {}
  {2}    {1}    {1}  {1}    {1}    {1}
  {3}    {3}    {2}  {2}    {2}    {2}
  {2,3}  {1,3}       {3}    {3}    {3}
                     {1,2}  {1,2}  {1,2}
                     {2,3}  {1,3}  {1,3}
                                   {2,3}
		

Crossrefs

Row lengths are A000217.
The diagonal T(n,n) is A365377, complement A365376.
The complement is counted by A365381.
A000009 counts subsets summing to n.
A000124 counts distinct possible sums of subsets of {1..n}.
A124506 counts combination-free subsets, differences of A326083.
A365046 counts combination-full subsets, differences of A364914.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],FreeQ[Total/@Subsets[#],k]&]],{n,8},{k,n*(n+1)/2}]

A365377 Number of subsets of {1..n} without a subset summing to n.

Original entry on oeis.org

0, 1, 2, 3, 6, 9, 17, 26, 49, 72, 134, 201, 366, 544, 984, 1436, 2614, 3838, 6770, 10019, 17767, 25808, 45597, 66671, 116461, 169747, 295922, 428090, 750343, 1086245, 1863608, 2721509, 4705456, 6759500, 11660244, 16877655, 28879255, 41778027, 71384579, 102527811, 176151979
Offset: 0

Views

Author

Gus Wiseman, Sep 08 2023

Keywords

Examples

			The a(1) = 1 through a(6) = 17 subsets:
  {}  {}   {}   {}     {}     {}
      {1}  {1}  {1}    {1}    {1}
           {2}  {2}    {2}    {2}
                {3}    {3}    {3}
                {1,2}  {4}    {4}
                {2,3}  {1,2}  {5}
                       {1,3}  {1,2}
                       {2,4}  {1,3}
                       {3,4}  {1,4}
                              {2,3}
                              {2,5}
                              {3,4}
                              {3,5}
                              {4,5}
                              {1,3,4}
                              {2,3,5}
                              {3,4,5}
		

Crossrefs

The complement w/ re-usable parts is A365073.
The complement is counted by A365376.
The version with re-usable parts is A365380.
A000009 counts sets summing to n, multisets A000041.
A000124 counts distinct possible sums of subsets of {1..n}.
A124506 appears to count combination-free subsets, differences of A326083.
A364350 counts combination-free strict partitions, complement A364839.
A365046 counts combination-full subsets, differences of A364914.
A365381 counts subsets of {1..n} with a subset summing to k.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]], FreeQ[Total/@Subsets[#],n]&]],{n,0,10}]
  • PARI
    isok(s, n) = forsubset(#s, ss, if (vecsum(vector(#ss, k, s[ss[k]])) == n, return(0))); return(1);
    a(n) = my(nb=0); forsubset(n, s, if (isok(s, n), nb++)); nb; \\ Michel Marcus, Sep 09 2023
    
  • Python
    from itertools import combinations, chain
    from sympy.utilities.iterables import partitions
    def A365377(n):
        if n == 0: return 0
        nset = set(range(1,n+1))
        s, c = [set(p) for p in partitions(n,m=n,k=n) if max(p.values(),default=1) == 1], 1
        for a in chain.from_iterable(combinations(nset,m) for m in range(2,n+1)):
            if sum(a) >= n:
                aset = set(a)
                for p in s:
                    if p.issubset(aset):
                        c += 1
                        break
        return (1<Chai Wah Wu, Sep 09 2023

Formula

a(n) = 2^n-A365376(n). - Chai Wah Wu, Sep 09 2023

Extensions

a(16)-a(27) from Michel Marcus, Sep 09 2023
a(28)-a(32) from Chai Wah Wu, Sep 09 2023
a(33)-a(35) from Chai Wah Wu, Sep 10 2023
More terms from David A. Corneth, Sep 10 2023

A371793 Number of non-biquanimous subsets of {1..n} containing n.

Original entry on oeis.org

1, 2, 3, 6, 12, 22, 44, 84, 163, 314, 610, 1184, 2308, 4505, 8843, 17386, 34336, 67881, 134662, 267431, 532172, 1060048, 2113947, 4218325, 8423138, 16826162, 33623311, 67205646, 134351795, 268621562, 537124814, 1074092608, 2147953084, 4295613139, 8590784715, 17181035797, 34361248692, 68721546255, 137441586921, 274881519876, 549760320576, 1099517861045, 2199030848627, 4398057100987, 8796105652038, 17592203866158
Offset: 1

Views

Author

Gus Wiseman, Apr 07 2024

Keywords

Comments

A finite multiset of numbers is defined to be biquanimous iff it can be partitioned into two multisets with equal sums. Biquanimous partitions are counted by A002219 and ranked by A357976.

Examples

			The a(1) = 1 through a(5) = 12 subsets:
  {1}  {2}    {3}    {4}      {5}
       {1,2}  {1,3}  {1,4}    {1,5}
              {2,3}  {2,4}    {2,5}
                     {3,4}    {3,5}
                     {1,2,4}  {4,5}
                     {2,3,4}  {1,2,5}
                              {1,3,5}
                              {2,4,5}
                              {3,4,5}
                              {1,2,3,5}
                              {1,3,4,5}
                              {1,2,3,4,5}
		

Crossrefs

The complement is counted by A232466, differences of A371791.
This is the "bi-" version of A371790, differences of A371789.
First differences of A371792.
The complement is the "bi-" version of A371797, differences of A371796.
A002219 aerated counts biquanimous partitions, ranks A357976.
A006827 and A371795 count non-biquanimous partitions, ranks A371731.
A108917 counts knapsack partitions, ranks A299702, strict A275972.
A237258 aerated counts biquanimous strict partitions, ranks A357854.
A321142 and A371794 count non-biquanimous strict partitions.
A321451 counts non-quanimous partitions, ranks A321453.
A321452 counts quanimous partitions, ranks A321454.
A366754 counts non-knapsack partitions, ranks A299729, strict A316402.
A371737 counts quanimous strict partitions, complement A371736.
A371781 lists numbers with biquanimous prime signature, complement A371782.
A371783 counts k-quanimous partitions.

Programs

  • Mathematica
    biqQ[y_]:=MemberQ[Total/@Subsets[y],Total[y]/2];
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&!biqQ[#]&]],{n,15}]

Extensions

a(16) onwards from Martin Fuller, Mar 21 2025
Previous Showing 11-20 of 32 results. Next