cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 24 results. Next

A373125 Difference between 2^n and the least squarefree number >= 2^n.

Original entry on oeis.org

0, 0, 1, 2, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 3, 3, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 28 2024

Keywords

Crossrefs

For prime instead of squarefree we have A092131, opposite A013603.
For primes instead of powers of 2: A240474, A240473, A112926, A112925.
Difference between 2^n and A372683(n).
The opposite is A373126, delta of A372889.
A005117 lists squarefree numbers, first differences A076259.
A053797 gives lengths of gaps between squarefree numbers.
A061398 counts squarefree numbers between primes (exclusive).
A070939 or (preferably) A029837 gives length of binary expansion.
A077643 counts squarefree terms between powers of 2, run-lengths of A372475.
A143658 counts squarefree numbers up to 2^n.
Cf. A372473 (firsts of A372472), A372541 (firsts of A372433).
For primes between powers of 2:
- sum A293697 (except initial terms)
- length A036378
- min A104080 or A014210, indices A372684 (firsts of A035100)
- max A014234, delta A013603

Programs

  • Mathematica
    Table[NestWhile[#+1&,2^n,!SquareFreeQ[#]&]-2^n,{n,0,100}]

Formula

a(n) = A372683(n)-2^n. - R. J. Mathar, May 31 2024

A372472 Number of zeros in the binary expansion of the n-th squarefree number.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 2, 1, 1, 1, 0, 3, 2, 2, 2, 1, 2, 1, 1, 0, 4, 4, 3, 3, 3, 2, 3, 3, 2, 2, 1, 2, 2, 1, 2, 2, 1, 1, 1, 5, 5, 4, 4, 4, 3, 4, 4, 3, 3, 2, 4, 3, 3, 3, 2, 3, 2, 2, 2, 1, 4, 3, 3, 2, 3, 3, 2, 2, 2, 1, 3, 3, 2, 2, 1, 2, 1, 0, 6, 6, 5, 5, 5, 5, 5, 4, 4
Offset: 1

Views

Author

Gus Wiseman, May 09 2024

Keywords

Examples

			The 12th squarefree number is 17, with binary expansion (1,0,0,0,1), so a(12) = 3.
		

Crossrefs

Positions of first appearances are A372473.
Restriction of A023416 to A005117.
For prime instead of squarefree we have A035103, ones A014499, bits A035100.
Counting 1's instead of 0's (so restrict A000120 to A005117) gives A372433.
For binary length we have A372475, run-lengths A077643.
A030190 gives binary expansion, reversed A030308.
A048793 lists positions of ones in reversed binary expansion, sum A029931.
A371571 lists positions of zeros in binary expansion, sum A359359.
A371572 lists positions of ones in binary expansion, sum A230877.
A372515 lists positions of zeros in reversed binary expansion, sum A359400.

Programs

Formula

a(n) = A023416(A005117(n)).
a(n) + A372433(n) = A070939(A005117(n)) = A372475(n).

A373126 Difference between 2^n and the greatest squarefree number <= 2^n.

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 3, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 29 2024

Keywords

Examples

			The greatest squarefree number <= 2^21 is 2097149, and 2^21 = 2097152, so a(21) = 3.
		

Crossrefs

For prime instead of squarefree we have A013603, opposite A092131.
For primes instead of powers of 2: A240474, A240473, A112926, A112925.
Difference between 2^n and A372889.
The opposite is A373125, delta of A372683.
A005117 lists squarefree numbers, first differences A076259.
A053797 gives lengths of gaps between squarefree numbers.
A061398 counts squarefree numbers between primes (exclusive).
A070939 or (preferably) A029837 gives length of binary expansion.
A077643 counts squarefree terms between powers of 2, run-lengths of A372475.
A143658 counts squarefree numbers up to 2^n.
Cf. A372473 (firsts of A372472), A372541 (firsts of A372433).
For primes between powers of 2:
- sum A293697 (except initial terms)
- length A036378
- min A104080 or A014210, indices A372684 (firsts of A035100)
- max A014234

Programs

  • Mathematica
    Table[2^n-NestWhile[#-1&,2^n,!SquareFreeQ[#]&],{n,0,100}]

Formula

a(n) = 2^n-A372889(n). - R. J. Mathar, May 31 2024

A372541 Least k such that the k-th squarefree number has exactly n ones in its binary expansion.

Original entry on oeis.org

1, 3, 6, 11, 20, 60, 78, 157, 314, 624, 1245, 3736, 4982, 9962, 19920, 39844, 79688, 239046, 318725, 956194, 1912371, 2549834, 5099650, 15298984, 20398664, 40797327, 81594626, 163189197, 326378284, 979135127, 1305513583, 2611027094, 5222054081, 10444108051
Offset: 0

Views

Author

Gus Wiseman, May 09 2024

Keywords

Examples

			The squarefree numbers A005117(a(n)) together with their binary expansions and binary indices begin:
       1:                   1 ~ {1}
       3:                  11 ~ {1,2}
       7:                 111 ~ {1,2,3}
      15:                1111 ~ {1,2,3,4}
      31:               11111 ~ {1,2,3,4,5}
      95:             1011111 ~ {1,2,3,4,5,7}
     127:             1111111 ~ {1,2,3,4,5,6,7}
     255:            11111111 ~ {1,2,3,4,5,6,7,8}
     511:           111111111 ~ {1,2,3,4,5,6,7,8,9}
    1023:          1111111111 ~ {1,2,3,4,5,6,7,8,9,10}
    2047:         11111111111 ~ {1,2,3,4,5,6,7,8,9,10,11}
    6143:       1011111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,13}
    8191:       1111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13}
   16383:      11111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14}
   32767:     111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}
   65535:    1111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}
  131071:   11111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17}
		

Crossrefs

Positions of firsts appearances in A372433.
Counting zeros instead of ones gives A372473, firsts in A372472.
For prime instead of squarefree we have A372517, firsts of A014499.
Counting bits (length) gives A372540, firsts of A372475, runs A077643.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers.
A030190 gives binary expansion, reversed A030308.
A048793 lists positions of ones in reversed binary expansion, sum A029931.
A145037, A097110 count ones minus zeros, for primes A372516, A177796.
A371571 lists positions of zeros in binary expansion, sum A359359.
A371572 lists positions of ones in binary expansion, sum A230877.
A372515 lists positions of zeros in reversed binary expansion, sum A359400.

Programs

  • Mathematica
    nn=10000;
    spnm[y_]:=Max@@NestWhile[Most,y,Union[#]!=Range[0,Max@@#]&];
    dcs=DigitCount[Select[Range[nn],SquareFreeQ],2,1];
    Table[Position[dcs,i][[1,1]],{i,spnm[dcs-1]}]
  • Python
    from math import isqrt
    from itertools import count
    from sympy import factorint, mobius
    from sympy.utilities.iterables import multiset_permutations
    def A372541(n):
        if n==0: return 1
        for l in count(n):
            m = 1<Chai Wah Wu, May 10 2024

Extensions

a(23)-a(33) from Chai Wah Wu, May 10 2024

A373123 Sum of all squarefree numbers from 2^(n-1) to 2^n - 1.

Original entry on oeis.org

1, 5, 18, 63, 218, 891, 3676, 15137, 60580, 238672, 953501, 3826167, 15308186, 61204878, 244709252, 979285522, 3917052950, 15664274802, 62663847447, 250662444349, 1002632090376, 4010544455838, 16042042419476, 64168305037147, 256675237863576
Offset: 1

Views

Author

Gus Wiseman, May 27 2024

Keywords

Examples

			This is the sequence of row sums of A005117 treated as a triangle with row-lengths A077643:
   1
   2   3
   5   6   7
  10  11  13  14  15
  17  19  21  22  23  26  29  30  31
  33  34  35  37  38  39  41  42  43  46  47  51  53  55  57  58  59  61  62
		

Crossrefs

Counting all numbers (not just squarefree) gives A010036.
For the sectioning of A005117:
Row-lengths are A077643, partial sums A143658.
First column is A372683, delta A373125, indices A372540, firsts of A372475.
Last column is A372889, delta A373126, indices A143658, diffs A077643.
For primes instead of powers of two:
- sum A373197
- length A373198 = A061398 - 1
- maxima A112925, opposite A112926
For prime instead of squarefree:
- sum A293697 (except initial terms)
- length A036378
- min A104080 or A014210, indices A372684 (firsts of A035100)
- max A014234, delta A013603
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers, first differences A076259.
A030190 gives binary expansion, reversed A030308.
A070939 or (preferably) A029837 gives length of binary expansion.
Cf. A372473 (firsts of A372472), A372541 (firsts of A372433).

Programs

  • Mathematica
    Table[Total[Select[Range[2^(n-1),2^n-1],SquareFreeQ]],{n,10}]
  • PARI
    a(n) = my(s=0); forsquarefree(i=2^(n-1), 2^n-1, s+=i[1]); s; \\ Michel Marcus, May 29 2024

A372889 Greatest squarefree number <= 2^n.

Original entry on oeis.org

1, 2, 3, 7, 15, 31, 62, 127, 255, 511, 1023, 2047, 4094, 8191, 16383, 32767, 65535, 131071, 262142, 524287, 1048574, 2097149, 4194303, 8388607, 16777214, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741822, 2147483647, 4294967295, 8589934591
Offset: 0

Views

Author

Gus Wiseman, May 27 2024

Keywords

Examples

			The terms together with their binary expansions and binary indices begin:
      1:               1 ~ {1}
      2:              10 ~ {2}
      3:              11 ~ {1,2}
      7:             111 ~ {1,2,3}
     15:            1111 ~ {1,2,3,4}
     31:           11111 ~ {1,2,3,4,5}
     62:          111110 ~ {2,3,4,5,6}
    127:         1111111 ~ {1,2,3,4,5,6,7}
    255:        11111111 ~ {1,2,3,4,5,6,7,8}
    511:       111111111 ~ {1,2,3,4,5,6,7,8,9}
   1023:      1111111111 ~ {1,2,3,4,5,6,7,8,9,10}
   2047:     11111111111 ~ {1,2,3,4,5,6,7,8,9,10,11}
   4094:    111111111110 ~ {2,3,4,5,6,7,8,9,10,11,12}
   8191:   1111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13}
  16383:  11111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14}
  32767: 111111111111111 ~ {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15}
		

Crossrefs

Positions of these terms in A005117 are A143658.
For prime instead of squarefree we have A014234, delta A013603.
For primes instead of powers of two we have A112925, opposite A112926.
Least squarefree number >= 2^n is A372683, delta A373125, indices A372540.
The opposite for prime instead of squarefree is A372684, firsts of A035100.
The delta (difference from 2^n) is A373126.
A000120 counts ones in binary expansion (binary weight), zeros A080791.
A005117 lists squarefree numbers, first differences A076259.
A030190 gives binary expansion, reversed A030308, length A070939 or A029837.
A061398 counts squarefree numbers between primes, exclusive.
A077643 counts squarefree terms between powers of 2, run-lengths of A372475.

Programs

  • Mathematica
    Table[NestWhile[#-1&,2^n,!SquareFreeQ[#]&],{n,0,15}]
  • PARI
    a(n) = my(k=2^n); while (!issquarefree(k), k--); k; \\ Michel Marcus, May 29 2024

Formula

a(n) = A005117(A143658(n)).
a(n) = A070321(2^n). - R. J. Mathar, May 31 2024

A372591 Numbers whose binary weight (A000120) plus bigomega (A001222) is even.

Original entry on oeis.org

2, 6, 7, 8, 9, 10, 11, 13, 15, 19, 24, 28, 31, 32, 33, 34, 36, 37, 39, 40, 41, 42, 44, 46, 47, 50, 51, 52, 54, 57, 58, 59, 60, 61, 65, 67, 70, 73, 76, 77, 79, 85, 86, 90, 95, 96, 97, 98, 103, 106, 107, 109, 110, 111, 112, 117, 119, 123, 124, 126, 127, 128, 129
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

The odd version is A372590.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
          {2}   2  (1)
        {2,3}   6  (2,1)
      {1,2,3}   7  (4)
          {4}   8  (1,1,1)
        {1,4}   9  (2,2)
        {2,4}  10  (3,1)
      {1,2,4}  11  (5)
      {1,3,4}  13  (6)
    {1,2,3,4}  15  (3,2)
      {1,2,5}  19  (8)
        {4,5}  24  (2,1,1,1)
      {3,4,5}  28  (4,1,1)
  {1,2,3,4,5}  31  (11)
          {6}  32  (1,1,1,1,1)
        {1,6}  33  (5,2)
        {2,6}  34  (7,1)
        {3,6}  36  (2,2,1,1)
      {1,3,6}  37  (12)
    {1,2,3,6}  39  (6,2)
        {4,6}  40  (3,1,1,1)
      {1,4,6}  41  (13)
      {2,4,6}  42  (4,2,1)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372587, complement A372586.
For minimum (A372437) we have A372440, complement A372439.
Positions of even terms in A372441, zeros A071814.
For maximum (A372442, zeros A372436) we have A372589, complement A372588.
The complement is A372590.
For just binary indices:
- length: A001969, complement A000069
- sum: A158704, complement A158705
- minimum: A036554, complement A003159
- maximum: A053754, complement A053738
For just prime indices:
- length: A026424 A028260 (count A027187), complement (count A027193)
- sum: A300061 (count A058696), complement A300063 (count A058695)
- minimum: A340933 (count A026805), complement A340932 (count A026804)
- maximum: A244990 (count A027187), complement A244991 (count A027193)
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031215 lists even-indexed primes, odd A031368.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[100],EvenQ[DigitCount[#,2,1]+PrimeOmega[#]]&]

A372588 Numbers k > 1 such that (greatest binary index of k) + (greatest prime index of k) is odd.

Original entry on oeis.org

2, 6, 7, 8, 10, 11, 15, 18, 19, 21, 24, 26, 27, 28, 29, 32, 33, 34, 40, 41, 44, 45, 46, 47, 50, 51, 55, 59, 60, 62, 65, 70, 71, 72, 74, 76, 78, 79, 81, 84, 86, 87, 89, 91, 95, 96, 98, 101, 104, 105, 106, 107, 108, 111, 112, 113, 114, 116, 117, 122, 126, 128
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The even version is A372589.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
        {2}   2  (1)
      {2,3}   6  (2,1)
    {1,2,3}   7  (4)
        {4}   8  (1,1,1)
      {2,4}  10  (3,1)
    {1,2,4}  11  (5)
  {1,2,3,4}  15  (3,2)
      {2,5}  18  (2,2,1)
    {1,2,5}  19  (8)
    {1,3,5}  21  (4,2)
      {4,5}  24  (2,1,1,1)
    {2,4,5}  26  (6,1)
  {1,2,4,5}  27  (2,2,2)
    {3,4,5}  28  (4,1,1)
  {1,3,4,5}  29  (10)
        {6}  32  (1,1,1,1,1)
      {1,6}  33  (5,2)
      {2,6}  34  (7,1)
      {4,6}  40  (3,1,1,1)
    {1,4,6}  41  (13)
    {3,4,6}  44  (5,1,1)
  {1,3,4,6}  45  (3,2,2)
		

Crossrefs

For sum (A372428, zeros A372427) we have A372586.
For minimum (A372437) we have A372439, complement A372440.
For length (A372441, zeros A071814) we have A372590, complement A372591.
Positions of odd terms in A372442, zeros A372436.
The complement is A372589.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    Select[Range[2,100],OddQ[IntegerLength[#,2]+PrimePi[FactorInteger[#][[-1,1]]]]&]

Formula

Numbers k such that A070939(k) + A061395(k) is odd.

A372438 Least binary index equals greatest prime index.

Original entry on oeis.org

6, 18, 20, 54, 56, 60, 100, 162, 168, 176, 180, 280, 300, 392, 416, 486, 500, 504, 528, 540, 840, 880, 900, 1088, 1176, 1232, 1248, 1400, 1458, 1500, 1512, 1584, 1620, 1936, 1960, 2080, 2432, 2500, 2520, 2640, 2700, 2744, 2912, 3264, 3528, 3696, 3744, 4200
Offset: 1

Views

Author

Gus Wiseman, May 04 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
Are there any squarefree terms > 6?

Examples

			The binary indices of 60 are {3,4,5,6}, the prime indices are {1,1,2,3}, and 3 = 3, so 60 is in the sequence.
The terms together with their prime indices begin:
     6: {1,2}
    18: {1,2,2}
    20: {1,1,3}
    54: {1,2,2,2}
    56: {1,1,1,4}
    60: {1,1,2,3}
   100: {1,1,3,3}
   162: {1,2,2,2,2}
   168: {1,1,1,2,4}
   176: {1,1,1,1,5}
   180: {1,1,2,2,3}
   280: {1,1,1,3,4}
   300: {1,1,2,3,3}
The terms together with their binary expansions and binary indices begin:
     6:            110 ~ {2,3}
    18:          10010 ~ {2,5}
    20:          10100 ~ {3,5}
    54:         110110 ~ {2,3,5,6}
    56:         111000 ~ {4,5,6}
    60:         111100 ~ {3,4,5,6}
   100:        1100100 ~ {3,6,7}
   162:       10100010 ~ {2,6,8}
   168:       10101000 ~ {4,6,8}
   176:       10110000 ~ {5,6,8}
   180:       10110100 ~ {3,5,6,8}
   280:      100011000 ~ {4,5,9}
   300:      100101100 ~ {3,4,6,9}
		

Crossrefs

Same length: A071814, zeros of A372441.
Same sum: A372427, zeros of A372428.
Same maxima: A372436, zeros of A372442.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Min[bix[#]]==Max[prix[#]]&]

Formula

A001511(a(n)) = A061395(a(n)).

A372586 Numbers k such that (sum of binary indices of k) + (sum of prime indices of k) is odd.

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 9, 12, 15, 16, 17, 20, 21, 29, 32, 36, 42, 43, 45, 46, 47, 48, 51, 53, 54, 55, 59, 60, 61, 63, 64, 65, 66, 67, 68, 71, 73, 78, 79, 80, 81, 84, 89, 91, 93, 94, 95, 97, 99, 101, 105, 110, 111, 113, 114, 115, 116, 118, 119, 121, 122, 125, 127
Offset: 1

Views

Author

Gus Wiseman, May 14 2024

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The even version is A372587.

Examples

			The terms (center), their binary indices (left), and their weakly decreasing prime indices (right) begin:
            {1}   1  ()
            {2}   2  (1)
          {1,2}   3  (2)
            {3}   4  (1,1)
          {1,3}   5  (3)
            {4}   8  (1,1,1)
          {1,4}   9  (2,2)
          {3,4}  12  (2,1,1)
      {1,2,3,4}  15  (3,2)
            {5}  16  (1,1,1,1)
          {1,5}  17  (7)
          {3,5}  20  (3,1,1)
        {1,3,5}  21  (4,2)
      {1,3,4,5}  29  (10)
            {6}  32  (1,1,1,1,1)
          {3,6}  36  (2,2,1,1)
        {2,4,6}  42  (4,2,1)
      {1,2,4,6}  43  (14)
      {1,3,4,6}  45  (3,2,2)
      {2,3,4,6}  46  (9,1)
    {1,2,3,4,6}  47  (15)
          {5,6}  48  (2,1,1,1,1)
		

Crossrefs

Positions of odd terms in A372428, zeros A372427.
For minimum (A372437) we have A372439, complement A372440.
For length (A372441, zeros A071814) we have A372590, complement A372591.
For maximum (A372442, zeros A372436) we have A372588, complement A372589.
The complement is A372587.
For just binary indices:
- length: A000069, complement A001969
- sum: A158705, complement A158704
- minimum: A003159, complement A036554
- maximum: A053738, complement A053754
For just prime indices:
- length: A026424 (count A027193), complement A028260 (count A027187)
- sum: A300063 (count A058695), complement A300061 (count A058696)
- minimum: A340932 (count A026804), complement A340933 (count A026805)
- maximum: A244991 (count A027193), complement A244990 (count A027187)
A005408 lists odd numbers.
A019565 gives Heinz number of binary indices, adjoint A048675.
A029837 gives greatest binary index, least A001511.
A031368 lists odd-indexed primes, even A031215.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A061395 gives greatest prime index, least A055396.
A070939 gives length of binary expansion.
A112798 lists prime indices, length A001222, reverse A296150, sum A056239.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    bix[n_]:=Join@@Position[Reverse[IntegerDigits[n,2]],1];
    Select[Range[100],OddQ[Total[bix[#]]+Total[prix[#]]]&]

Formula

Numbers k such that A029931(k) + A056239(k) is odd.
Previous Showing 11-20 of 24 results. Next