cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 26 results. Next

A053538 Triangle: a(n,m) = ways to place p balls in n slots with m in the rightmost p slots, 0<=p<=n, 0<=m<=n, summed over p, a(n,m)= Sum_{k=0..n} binomial(k,m)*binomial(n-k,k-m), (see program line).

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 5, 5, 4, 1, 1, 8, 10, 7, 5, 1, 1, 13, 18, 16, 9, 6, 1, 1, 21, 33, 31, 23, 11, 7, 1, 1, 34, 59, 62, 47, 31, 13, 8, 1, 1, 55, 105, 119, 101, 66, 40, 15, 9, 1, 1, 89, 185, 227, 205, 151, 88, 50, 17, 10, 1, 1, 144, 324, 426, 414, 321, 213, 113, 61, 19, 11, 1, 1
Offset: 0

Views

Author

Wouter Meeussen, May 23 2001

Keywords

Comments

Riordan array (1/(1-x-x^2), x(1-x)/(1-x-x^2)). Row sums are A000079. Diagonal sums are A006053(n+2). - Paul Barry, Nov 01 2006
Subtriangle of the triangle given by (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 05 2012
Mirror image of triangle in A208342. - Philippe Deléham, Mar 05 2012
A053538 is jointly generated with A076791 as an array of coefficients of polynomials u(n,x): initially, u(1,x)=v(1,x)=1, for n>1, u(n,x) = x*u(n-1,x) + v(n-1,x) and v(n,x) = u(n-1,x) + v(n-1,x). See the Mathematica section at A076791. - Clark Kimberling, Mar 08 2012
The matrix inverse starts
1;
-1, 1;
-1, -1, 1;
1, -2, -1, 1;
3, 1, -3, -1, 1;
1, 6, 1, -4, -1, 1;
-7, 4, 10, 1, -5, -1, 1;
-13, -13, 8, 15, 1, -6, -1, 1;
3, -31, -23, 13, 21, 1, -7, -1, 1; - R. J. Mathar, Mar 15 2013
Also appears to be the number of subsets of {1..n} containing n with k maximal anti-runs of consecutive elements increasing by more than 1. For example, the subset {1,3,6,7,11,12} has maximal anti-runs ((1,3,6),(7,11),(12)) so is counted under a(12,3). For runs instead of anti-runs we get A202064. - Gus Wiseman, Jun 26 2025

Examples

			n=4; Table[binomial[k, j]binomial[n-k, k-j], {k, 0, n}, {j, 0, n}] splits {1, 4, 6, 4, 1} into {{1, 0, 0, 0, 0}, {3, 1, 0, 0, 0}, {1, 4, 1, 0, 0}, {0, 0, 3, 1, 0}, {0, 0, 0, 0, 1}} and this gives summed by columns {5, 5, 4, 1, 1}
Triangle begins :
   1;
   1,  1;
   2,  1,  1;
   3,  3,  1, 1;
   5,  5,  4, 1, 1;
   8, 10,  7, 5, 1, 1;
  13, 18, 16, 9, 6, 1, 1;
...
(0, 1, 1, -1, 0, 0, 0, ...) DELTA (1, 0, -1, 1, 0, 0, 0, ...) begins :
  1;
  0,  1;
  0,  1,  1;
  0,  2,  1,  1;
  0,  3,  3,  1, 1;
  0,  5,  5,  4, 1, 1;
  0,  8, 10,  7, 5, 1, 1;
  0, 13, 18, 16, 9, 6, 1, 1;
		

Crossrefs

Column k = 1 is A000045.
Row sums are A000079.
Column k = 2 is A010049.
For runs instead of anti-runs we have A202064.
For integer partitions see A268193, strict A384905, runs A116674.
A034839 counts subsets by number of maximal runs.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.
A384877 gives lengths of maximal anti-runs in binary indices, firsts A384878.
A384893 counts subsets by number of maximal anti-runs.

Programs

  • GAP
    Flat(List([0..12], n-> List([0..n], k-> Sum([0..n], j->  Binomial(j,k)*Binomial(n-j,j-k)) ))); # G. C. Greubel, May 16 2019
  • Magma
    [[(&+[Binomial(j,k)*Binomial(n-j,j-k): j in [0..n]]): k in [0..n]]: n in [0..12]]; // G. C. Greubel, May 16 2019
    
  • Maple
    a:= (n, m)-> add(binomial(k, m)*binomial(n-k, k-m), k=0..n):
    seq(seq(a(n,m), m=0..n), n=0..12);  # Alois P. Heinz, Sep 19 2013
  • Mathematica
    Table[Sum[Binomial[k, m]*Binomial[n-k, k-m], {k,0,n}], {n,0,12}, {m,0,n}]
  • PARI
    {T(n,k) = sum(j=0,n, binomial(j,k)*binomial(n-j,j-k))}; \\ G. C. Greubel, May 16 2019
    
  • Sage
    [[sum(binomial(j,k)*binomial(n-j,j-k) for j in (0..n)) for k in (0..n)] for n in (0..12)] # G. C. Greubel, May 16 2019
    

Formula

From Philippe Deléham, Mar 05 2012: (Start)
T(n,k) = T(n-1,k) + T(n-1,k-1) + T(n-2,k) - T(n-2,k-1), T(0,0) = T(1,0) = T(1,1) = 1 and T(n,k) = 0 if k<0 or if k>n.
G.f.: 1/(1-(1+y)*x-(1-y)*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A077957(n), A000045(n+1), A000079(n), A001906(n+1), A007070(n), A116415(n), A084326(n+1), A190974(n+1), A190978(n+1), A190984(n+1), A190990(n+1), A190872(n+1) for x = -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 respectively. (End)

A384889 Number of subsets of {1..n} with all equal lengths of maximal anti-runs (increasing by more than 1).

Original entry on oeis.org

1, 2, 4, 8, 14, 23, 37, 59, 93, 146, 230, 365, 584, 940, 1517, 2450, 3959, 6404, 10373, 16822, 27298, 44297, 71843, 116429, 188550, 305200, 493930, 799422, 1294108, 2095291, 3392736, 5493168, 8892148, 14390372, 23282110, 37660759, 60914308, 98528312, 159386110
Offset: 0

Views

Author

Gus Wiseman, Jun 18 2025

Keywords

Examples

			The subset {3,6,7,9,10,12} has maximal anti-runs ((3,6),(7,9),(10,12)), with lengths (2,2,2), so is counted under a(12).
The a(0) = 1 through a(4) = 14 subsets:
  {}  {}   {}     {}       {}
      {1}  {1}    {1}      {1}
           {2}    {2}      {2}
           {1,2}  {3}      {3}
                  {1,2}    {4}
                  {1,3}    {1,2}
                  {2,3}    {1,3}
                  {1,2,3}  {1,4}
                           {2,3}
                           {2,4}
                           {3,4}
                           {1,2,3}
                           {2,3,4}
                           {1,2,3,4}
		

Crossrefs

For runs instead of anti-runs we have A243815, distinct A384175, complement A384176.
For distinct instead or equal lengths we have A384177, ranks A384879.
For partitions instead of subsets we have A384888.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A047966 counts uniform partitions (equal multiplicities), ranks A072774.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],SameQ@@Length/@Split[#,#2!=#1+1&]&]],{n,0,10}]
  • PARI
    lista(n)=Vec(sum(i=1,(n+1)\2,1/(1-x^(2*i-1)/(1-x)^(i-1))-1,1-x+O(x*x^n))/(1-x)^2) \\ Christian Sievers, Jun 20 2025

Formula

G.f.: ( Sum_{i>=1} (1/(1-x^(2*i-1)/(1-x)^(i-1))-1) + 1-x ) / (1-x)^2. - Christian Sievers, Jun 21 2025

Extensions

a(21) and beyond from Christian Sievers, Jun 20 2025

A384887 Number of integer partitions of n with all equal lengths of maximal gapless runs (decreasing by 0 or 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 10, 14, 18, 21, 26, 35, 39, 46, 58, 68, 79, 97, 111, 131, 155, 177, 206, 246, 278, 318, 373, 423, 483, 563, 632, 722, 827, 931, 1058, 1209, 1354, 1528, 1736, 1951, 2188, 2475, 2762, 3097, 3488, 3886, 4342, 4876, 5414, 6038, 6741, 7482
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2025

Keywords

Examples

			The partition y = (6,5,5,5,3,3,2,1) has maximal gapless runs ((6,5,5,5),(3,3,2,1)), with lengths (4,4), so y is counted under a(30).
The a(1) = 1 through a(8) = 14 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (211)   (221)    (51)      (61)       (62)
                    (1111)  (2111)   (222)     (322)      (71)
                            (11111)  (321)     (2221)     (332)
                                     (2211)    (3211)     (2222)
                                     (21111)   (22111)    (3221)
                                     (111111)  (211111)   (3311)
                                               (1111111)  (22211)
                                                          (32111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The strict case is A384886, distinct A384178.
For distinct instead of equal lengths we have A384884.
For anti-runs instead of runs we have A384888, distinct A384885.
For subsets instead of strict partitions we have A243815.
Without counting decreases by 0 we get A384904.
A000041 counts integer partitions, strict A000009.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A355394 counts partitions without a neighborless part, singleton case A355393.
A356236 counts partitions with a neighborless part, singleton case A356235.
A356606 counts strict partitions without a neighborless part, complement A356607.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[#,#2>=#1-1&]&]],{n,0,15}]

A384885 Number of integer partitions of n with all distinct lengths of maximal anti-runs (decreasing by more than 1).

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 4, 6, 8, 9, 13, 15, 18, 22, 28, 31, 38, 45, 53, 62, 74, 86, 105, 123, 146, 171, 208, 242, 290, 340, 399, 469, 552, 639, 747, 862, 999, 1150, 1326, 1514, 1736, 1979, 2256, 2560, 2909, 3283, 3721, 4191, 4726, 5311, 5973, 6691, 7510, 8396, 9395
Offset: 0

Views

Author

Gus Wiseman, Jun 13 2025

Keywords

Examples

			The partition y = (8,6,3,3,3,1) has maximal anti-runs ((8,6,3),(3),(3,1)), with lengths (3,1,2), so y is counted under a(24).
The partition z = (8,6,5,3,3,1) has maximal anti-runs ((8,6),(5,3),(3,1)), with lengths (2,2,2), so z is not counted under a(26).
The a(1) = 1 through a(9) = 9 partitions:
  (1)  (2)  (3)  (4)    (5)      (6)      (7)      (8)      (9)
                 (3,1)  (4,1)    (4,2)    (5,2)    (5,3)    (6,3)
                        (3,1,1)  (5,1)    (6,1)    (6,2)    (7,2)
                                 (4,1,1)  (3,3,1)  (7,1)    (8,1)
                                          (4,2,1)  (4,2,2)  (4,4,1)
                                          (5,1,1)  (4,3,1)  (5,2,2)
                                                   (5,2,1)  (5,3,1)
                                                   (6,1,1)  (6,2,1)
                                                            (7,1,1)
		

Crossrefs

For subsets instead of strict partitions we have A384177, for runs A384175.
The strict case is A384880.
For runs instead of anti-runs we have A384884, strict A384178.
For equal instead of distinct lengths we have A384888, for runs A384887.
A000041 counts integer partitions, strict A000009.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A355394 counts partitions without a neighborless part, singleton case A355393.
A356236 counts partitions with a neighborless part, singleton case A356235.
A356606 counts strict partitions without a neighborless part, complement A356607.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Length/@Split[#,#2<#1-1&]&]],{n,0,15}]

A210034 Triangle of coefficients of polynomials v(n,x) jointly generated with A210033; see the Formula section.

Original entry on oeis.org

1, 2, 1, 4, 2, 1, 7, 5, 2, 1, 12, 10, 6, 2, 1, 20, 20, 13, 7, 2, 1, 33, 38, 29, 16, 8, 2, 1, 54, 71, 60, 39, 19, 9, 2, 1, 88, 130, 122, 86, 50, 22, 10, 2, 1, 143, 235, 241, 187, 116, 62, 25, 11, 2, 1, 232, 420, 468, 392, 267, 150, 75, 28, 12, 2, 1, 376, 744, 894, 806
Offset: 1

Views

Author

Clark Kimberling, Mar 16 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.
From Gus Wiseman, Jun 29 2025: (Start)
This appears to be the number of subsets of {1..n} with k>0 maximal anti-runs (sequences of consecutive elements increasing by more than 1). For example, the subset {1,2,4,5} has maximal anti-runs ((1),(2,4),(5)) so is counted under T(5,3). Row n = 5 counts the following:
{1} {1,2} {1,2,3} {1,2,3,4} {1,2,3,4,5}
{2} {2,3} {2,3,4} {2,3,4,5}
{3} {3,4} {3,4,5}
{4} {4,5} {1,2,3,5}
{5} {1,2,4} {1,2,4,5}
{1,3} {1,2,5} {1,3,4,5}
{1,4} {1,3,4}
{1,5} {1,4,5}
{2,4} {2,3,5}
{2,5} {2,4,5}
{3,5}
{1,3,5}
For runs instead of anti-runs we have A034839, with n A202064. For reversed partitions instead of subsets we have A268193. (End)

Examples

			First five rows:
  1
  2    1
  4    2    1
  7    5    2   1
  12   10   6   2   1
First three polynomials v(n,x): 1, 2 + x, 4 + 2*x + x^2.
		

Crossrefs

Column k = 1 is A000071.
Row sums are A000225.
Column k = 2 is A001629.
Column k = 3 is A055243.
The version including k = 0 is A384893.
A034839 counts subsets by number of maximal runs, see also A202023, A202064.
A384175 counts subsets with all distinct lengths of maximal runs, complement A384176.
A384877 gives lengths of maximal anti-runs of binary indices, firsts A384878.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + v[n - 1, x] + 1;
    v[n_, x_] := u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A210033 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A210034 *)

Formula

u(n,x)=u(n-1,x)+v(n-1,x)+1,
v(n,x)=u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.

A385886 Irregular triangle read by rows listing the lengths of maximal anti-runs (sequences of distinct consecutive elements increasing by more than 1) of binary indices, duplicate rows removed.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 3, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 1, 1, 2, 1
Offset: 0

Views

Author

Gus Wiseman, Jul 14 2025

Keywords

Comments

A binary index of n is any position of a 1 in its reversed binary expansion. The binary indices of n are row n of A048793.
This is the triangle A384877, except all duplicates after the first instance of each composition are removed. It lists all compositions in order of their first appearance as a row of A384877.

Examples

			The binary indices of 27 are {1,2,4,5}, with maximal anti-runs ((1),(2,4),(5)), with lengths (1,2,1). After removing duplicates, this is our row 10.
The binary indices of 53 are {1,3,5,6}, with maximal anti-runs ((1,3,5),(6)), with lengths (3,1). After removing duplicates, this is our row 16.
Triangle begins:
   0: .
   1: 1
   2: 1 1
   3: 2
   4: 1 1 1
   5: 1 2
   6: 2 1
   7: 1 1 1 1
   8: 3
   9: 1 1 2
  10: 1 2 1
  11: 2 1 1
  12: 1 1 1 1 1
  13: 1 3
  14: 2 2
  15: 1 1 1 2
  16: 3 1
  17: 1 1 2 1
  18: 1 2 1 1
  19: 2 1 1 1
  20: 1 1 1 1 1 1
		

Crossrefs

In the following references, "before" is short for "before removing duplicate rows".
Positions of singleton rows appear to be A001906 = A055588 - 1.
Positions of rows of the form (1,1,...) appear to be A001911-2, before A023758.
Row sums appear to be A200648, before A000120.
Row lengths appear to be A200649, before A384890.
Standard composition numbers of each row appear to be A348366.
Before we had A384877, ranks A385816, firsts A052499.
For runs instead of anti-runs we have A385817, see A245563, A245562, A246029.

Programs

  • Mathematica
    DeleteDuplicates[Table[Length/@Split[Join@@Position[Reverse[IntegerDigits[n,2]],1],#2!=#1+1&],{n,0,100}]]

A202064 Triangle T(n,k), read by rows, given by (2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Original entry on oeis.org

1, 2, 0, 3, 1, 0, 4, 4, 0, 0, 5, 10, 1, 0, 0, 6, 20, 6, 0, 0, 0, 7, 35, 21, 1, 0, 0, 0, 8, 56, 56, 8, 0, 0, 0, 0, 9, 84, 126, 36, 1, 0, 0, 0, 0, 10, 120, 252, 120, 10, 0, 0, 0, 0, 0, 11, 165, 462, 330, 55, 1, 0, 0, 0, 0, 0
Offset: 0

Views

Author

Philippe Deléham, Dec 10 2011

Keywords

Comments

Riordan array (x/(1-x)^2, x^2/(1-x)^2).
Mirror image of triangle in A119900.
A203322*A130595 as infinite lower triangular matrices. - Philippe Deléham, Jan 05 2011
From Gus Wiseman, Jul 07 2025: (Start)
Also the number of subsets of {1..n} containing n with k maximal runs (sequences of consecutive elements increasing by 1). For example, row n = 5 counts the following subsets:
{5} {1,5} {1,3,5}
{4,5} {2,5}
{3,4,5} {3,5}
{2,3,4,5} {1,2,5}
{1,2,3,4,5} {1,4,5}
{2,3,5}
{2,4,5}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
For anti-runs instead of runs we have A053538.
Without requiring n see A210039, A202023, reverse A098158, A109446.
(End)

Examples

			Triangle begins :
1
2, 0
3, 1, 0
4, 4, 0, 0
5, 10, 1, 0, 0
6, 20, 6, 0, 0, 0
7, 35, 21, 1, 0, 0, 0
8, 56, 56, 8, 0, 0, 0, 0
		

Crossrefs

Cf. A007318, A005314 (antidiagonal sums), A119900, A084938, A130595, A203322.
Column k = 1 is A000027.
Row sums are A000079.
Column k = 2 is A000292.
Without zeros we have A034867.
Last nonzero term in each row appears to be A124625.
A034839 counts subsets by number of maximal runs, for anti-runs A384893.
A116674 counts strict partitions by number of maximal runs, for anti-runs A384905.

Programs

  • Mathematica
    Table[Length[Select[Subsets[Range[n]],MemberQ[#,n]&&Length[Split[#,#2==#1+1&]]==k&]],{n,12},{k,n}] (* Gus Wiseman, Jul 07 2025 *)

Formula

G.f.: 1/((1-x)^2-y*x^2).
Sum_{k, 0<=k<=n} T(n,k)*x^k = A000027(n+1), A000079(n), A000129(n+1), A002605(n+1), A015518(n+1), A063727(n), A002532(n+1), A083099(n+1), A015519(n+1), A003683(n+1), A002534(n+1), A083102(n), A015520(n+1), A091914(n) for x = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10, 11, 12, 13 respectively.
T(n,k) = binomial(n+1,2k+1).
T(n,k) = 2*T(n-1,k) + T(n-2,k-1) - T(n-2,k), T(0,0) = 1, T(1,0) = 2, T(1,1) = 0 and T(n,k) = 0 if k<0 or if k>n. - Philippe Deléham, Mar 15 2012

A384891 Number of permutations of {1..n} with all distinct lengths of maximal runs (increasing by 1).

Original entry on oeis.org

1, 1, 1, 3, 3, 5, 23, 25, 43, 63, 345, 365, 665, 949, 1513, 8175, 9003, 15929, 23399, 36949, 51043, 293715, 314697, 570353, 826817, 1318201, 1810393, 2766099, 14180139, 15600413, 27707879, 40501321, 63981955, 88599903, 134362569, 181491125, 923029217
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2025

Keywords

Examples

			The permutation (1,2,6,7,8,9,3,4,5) has maximal runs ((1,2),(6,7,8,9),(3,4,5)), with lengths (2,4,3), so is counted under a(9).
The a(0) = 1 through a(7) = 25 permutations:
  ()  (1)  (12)  (123)  (1234)  (12345)  (123456)  (1234567)
                 (231)  (2341)  (23451)  (123564)  (1234675)
                 (312)  (4123)  (34512)  (123645)  (1234756)
                                (45123)  (124563)  (1245673)
                                (51234)  (126345)  (1273456)
                                         (145623)  (1456723)
                                         (156234)  (1672345)
                                         (231456)  (2314567)
                                         (234156)  (2345167)
                                         (234561)  (2345671)
                                         (312456)  (3124567)
                                         (345126)  (3456127)
                                         (345612)  (3456712)
                                         (412356)  (4567123)
                                         (451236)  (4567231)
                                         (456231)  (4567312)
                                         (456312)  (5123467)
                                         (561234)  (5612347)
                                         (562341)  (5671234)
                                         (564123)  (6712345)
                                         (612345)  (6723451)
                                         (634512)  (6751234)
                                         (645123)  (7123456)
                                                   (7345612)
                                                   (7561234)
		

Crossrefs

Counting by number of maximal anti-runs gives A010027, for runs A123513.
For subsets instead of permutations we have A384175, complement A384176.
For partitions we have A384884 (anti-runs A384885), strict A384178 (anti-runs A384880).
For equal instead of distinct lengths we have A384892.
For anti-runs instead of runs we have A384907.
A000041 counts integer partitions, strict A000009.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A356606 counts strict partitions without a neighborless part, complement A356607.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Range[n]],UnsameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]
  • PARI
    lista(n)=my(b(n)=sum(i=0,n-1,(-1)^i*(n-i)!*binomial(n-1,i)), d=floor(sqrt(2*n)), p=prod(i=1,n,1+x*y^i,1+O(y*y^n)*((1-x^(n+1))/(1-x))+O(x*x^d))); Vec(1+sum(i=1,d,i!*b(i)*polcoef(p,i))) \\ Christian Sievers, Jun 22 2025

Formula

a(n) = Sum_{k=1..n} ( T(n,k) * A000255(k-1) ) for n>=1, where T(n,k) is the number of compositions of n into k distinct parts (cf. A072574). - Christian Sievers, Jun 22 2025

Extensions

a(11) and beyond from Christian Sievers, Jun 22 2025

A384892 Number of permutations of {1..n} with all equal lengths of maximal runs (increasing by 1).

Original entry on oeis.org

1, 1, 2, 4, 13, 54, 314, 2120, 16700, 148333, 1468512, 16019532, 190899736, 2467007774, 34361896102, 513137616840, 8178130784179, 138547156531410, 2486151753462260, 47106033220679060, 939765362754015750, 19690321886243848784, 432292066866187743954
Offset: 0

Views

Author

Gus Wiseman, Jun 19 2025

Keywords

Examples

			The permutation (1,2,5,6,3,4,7,8) has maximal runs ((1,2),(5,6),(3,4),(7,8)), with lengths (2,2,2,2), so is counted under a(8).
The a(0) = 1 through a(4) = 13 permutations:
  ()  (1)  (12)  (123)  (1234)
           (21)  (132)  (1324)
                 (213)  (1432)
                 (321)  (2143)
                        (2413)
                        (2431)
                        (3142)
                        (3214)
                        (3241)
                        (3412)
                        (4132)
                        (4213)
                        (4321)
		

Crossrefs

For subsets instead of permutations we have A243815, for anti-runs A384889.
For strict partitions and distinct lengths we have A384178, anti-runs A384880.
For integer partitions and distinct lengths we have A384884, anti-runs A384885.
For distinct lengths we have A384891, for anti-runs A384907.
For partitions we have A384904, strict A384886.
A010027 counts permutations by maximal anti-runs, for runs A123513.
A034839 counts subsets by number of maximal runs, for strict partitions A116674.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A384893 counts subsets by number of maximal anti-runs, for partitions A268193, A384905.

Programs

  • Mathematica
    Table[Length[Select[Permutations[Range[n]],SameQ@@Length/@Split[#,#2==#1+1&]&]],{n,0,10}]
  • PARI
    a(n)=if(n,sumdiv(n,d,sum(i=0,d-1,(-1)^i*(d-i)!*binomial(d-1,i))),1) \\ Christian Sievers, Jun 22 2025

Formula

a(n) = Sum_{d|n} A000255(d-1). - Christian Sievers, Jun 22 2025

Extensions

a(11) and beyond from Christian Sievers, Jun 22 2025

A384888 Number of integer partitions of n with all equal lengths of maximal anti-runs (decreasing by more than 1).

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 10, 13, 17, 20, 24, 32, 36, 44, 55, 64, 75, 92, 105, 125, 147, 169, 195, 231, 263, 303, 351, 401, 458, 532, 600, 686, 784, 889, 1010, 1152, 1296, 1468, 1662, 1875, 2108, 2384, 2669, 3001, 3373, 3775, 4222, 4734, 5278, 5896, 6576, 7322
Offset: 0

Views

Author

Gus Wiseman, Jun 15 2025

Keywords

Examples

			The partition y = (10,6,6,4,3,1) has maximal anti-runs ((10,6),(6,4),(3,1)), with lengths (2,2,2), so y is counted under a(30).
The a(1) = 1 through a(8) = 13 partitions:
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (21)   (22)    (32)     (33)      (43)       (44)
             (111)  (31)    (41)     (42)      (52)       (53)
                    (211)   (221)    (51)      (61)       (62)
                    (1111)  (2111)   (222)     (322)      (71)
                            (11111)  (321)     (2221)     (332)
                                     (2211)    (3211)     (2222)
                                     (21111)   (22111)    (3221)
                                     (111111)  (211111)   (22211)
                                               (1111111)  (32111)
                                                          (221111)
                                                          (2111111)
                                                          (11111111)
		

Crossrefs

The strict case is new, distinct A384880.
For distinct instead of equal lengths we have A384885.
For runs instead of anti-runs we have A384887, distinct A384884.
For subsets instead of strict partitions we have A384889, distinct A384177, runs A243815.
A000041 counts integer partitions, strict A000009.
A007690 counts partitions with no singletons, complement A183558.
A034296 counts flat or gapless partitions, ranks A066311 or A073491.
A098859 counts Wilf partitions (distinct multiplicities), complement A336866.
A239455 counts Look-and-Say or section-sum partitions, ranks A351294 or A381432.
A355394 counts partitions without a neighborless part, singleton case A355393.
A356236 counts partitions with a neighborless part, singleton case A356235.
A356606 counts strict partitions without a neighborless part, complement A356607.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],SameQ@@Length/@Split[#,#2<#1-1&]&]],{n,0,15}]
Previous Showing 11-20 of 26 results. Next