cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Previous Showing 11-20 of 104 results. Next

A057946 Bad hexadecimal notation for n: write n in hexadecimal notation, replacing digit ten with "10", digit eleven with "11", ... and digit fifteen with "15".

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 110, 111, 112, 113, 114, 115, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 210, 211, 212, 213, 214, 215, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 310, 311, 312, 313, 314, 315, 40, 41
Offset: 0

Views

Author

Henry Bottomley, Oct 13 2000

Keywords

Examples

			a(15)=15 since it is represented by the digit "15" base 16. a(21)=15 since it is represented by the digit "1" followed by the digit "5" base 16.
		

Crossrefs

Cf. A057947 for ambiguous numbers, A055645 for a better representation of hexadecimal.

Programs

  • Maple
    a:= proc(n) local i, m, r ; m:=n; r:=NULL;
          if n=0 then return 0 fi;
          for i from 0 while m>0 do
            r:= irem(m, 16, 'm'), r
          od; parse(cat(r))
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, Jun 23 2014
  • Mathematica
    f[n_] := FromDigits@ Flatten@ IntegerDigits@ IntegerDigits[n, 16]; Array[f, 66, 0] (* Robert G. Wilson v, Jun 23 2014 *)

A107625 Every digit of prime and its index contains a loop (only digits 0,4,6,8,9 in prime and its index).

Original entry on oeis.org

409, 4409, 4999, 6869, 44699, 44909, 46499, 48409, 64849, 66889, 68449, 68909, 86969, 89689, 98869, 98899, 480499, 488689, 490499, 609809, 806609, 806999, 866969, 868669, 868849, 869489, 869849, 869899, 869909, 880949, 6440809, 6440999, 6488969, 6489449
Offset: 1

Views

Author

Zak Seidov, May 18 2005

Keywords

Comments

Corresponding indices in A107624. Cf. A001744 Every digit contains a loop.

Crossrefs

Programs

  • Mathematica
    Do[id=Union[IntegerDigits[p=Prime[n]], IntegerDigits[n]];If[Count[id, 1]+Count[id, 2]+Count[id, 3]+Count[id, 5]+Count[id, 7]==0, Print[p]], {n, 10000}]
    Module[{c={0,4,6,8,9}},Select[Prime/@(Rest[FromDigits/@Tuples[c,6]]), SubsetQ[ c,IntegerDigits[#]]&]] (* Harvey P. Dale, Sep 03 2015 *)
  • PARI
    is_a001744(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 5, 7])==0
    my(i=1); forprime(p=1, 65e5, if(is_a001744(p) && is_a001744(i), print1(p, ", ")); i++) \\ Felix Fröhlich, Sep 09 2019

Extensions

More terms from Harvey P. Dale, Sep 03 2015

A138563 Beastly fax numbers: numbers containing the fax number of the Beast (667, one more than its regular number) in their decimal expansion.

Original entry on oeis.org

667, 1667, 2667, 3667, 4667, 5667, 6667, 6670, 6671, 6672, 6673, 6674, 6675, 6676, 6677, 6678, 6679, 7667, 8667, 9667, 10667, 11667, 12667, 13667, 14667, 15667, 16667, 16670, 16671, 16672, 16673, 16674, 16675, 16676, 16677, 16678
Offset: 1

Views

Author

N. J. A. Sloane, May 13 2007

Keywords

Comments

The sum of the reciprocals of numbers not in this sequence is convergent. - Adam P. Goucher, Apr 27 2014

Crossrefs

Cf. A051003.

Programs

  • Mathematica
    Select[Range[20000], StringContainsQ[ToString[#], "667"] &] (* Amiram Eldar, Jun 28 2024 *)

Formula

a(n) ~ n. - Charles R Greathouse IV, Oct 25 2014
Sum_{k>=1, k is not a term} 1/k = 2301.846622336249707557560554200194249235044868457872023381489896767824372028... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Jun 28 2024

A215009 Numbers which are "easy" to key on a computer numpad.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 20, 21, 23, 25, 32, 36, 41, 45, 47, 52, 54, 56, 58, 63, 65, 69, 74, 78, 85, 87, 89, 96, 98, 101, 120, 121, 123, 125, 141, 145, 147, 202, 210, 212, 214, 232, 236, 252, 254, 256, 258, 320, 321, 323, 325, 363, 365, 369, 410
Offset: 1

Views

Author

Arkadiusz Wesolowski, Jul 31 2012

Keywords

Comments

On a computer numpad, a number is "easy" to key in if each adjacent pair of digits in the number are adjacent - either horizontally or vertically.
Here are two ways to type these numbers. Example for 25:
1. Press the numpad "2" key. Then let go and press "5".
2. Press the "2" and slide your finger on the numeric keypad up to the "5".
Method 2 shows that the sequence contains only numbers in which every pair of adjacent digits are distinct.
Pressing a numeric key followed by "0" and pressing a numeric key is equivalent to selecting "101" or "202".

Examples

			25 is a term because the 2 and 5 keys are adjacent.
		

Crossrefs

Cf. A082390. Subsequence of A043096.

Programs

  • Mathematica
    lst = {}; Do[If[StringCount[ToString[n], {"00", "03", "04", "05", "06", "07", "08", "09", "11", "13", "15", "16", "17", "18", "19", "22", "24", "26", "27", "28", "29", "30", "31", "33", "34", "35", "37", "38", "39", "40", "42", "43", "44", "46", "48", "49", "50", "51", "53", "55", "57", "59", "60", "61", "62", "64", "66", "67", "68", "70", "71", "72", "73", "75", "76", "77", "79", "80", "81", "82", "83", "84", "86", "88", "90", "91", "92", "93", "94", "95", "97", "99", "102", "201"}] == 0, AppendTo[lst, n]], {n, 0, 410}]; lst
  • Python
    from itertools import count, islice
    m = {'0':'12', '1':'024', '2':'0135', '3':'26', '4':'157', '5':'2468', '6':'359', '7':'48', '8':'579', '9':'68'}
    def c(r): return (r=='0' or r[0]!='0') and not ("102" in r or "201" in r)
    def agen():
        reach = list("0123456789")
        for d in count(1):
            yield from (int(r) for r in reach if c(r))
            reach = [r + s for r in reach for s in m[r[-1]]]
    print(list(islice(agen(), 62))) # Michael S. Branicky, Jul 05 2022

A049004 First letter of English names for months of year, mapping A -> 1, B -> 2 etc.

Original entry on oeis.org

10, 6, 13, 1, 13, 10, 10, 1, 19, 15, 14, 4, 10, 6, 13, 1, 13, 10, 10, 1, 19, 15, 14, 4, 10, 6, 13, 1, 13, 10, 10, 1, 19, 15, 14, 4, 10, 6, 13, 1, 13, 10, 10, 1, 19, 15, 14, 4, 10, 6, 13, 1, 13, 10, 10, 1, 19, 15, 14, 4, 10, 6, 13, 1, 13, 10, 10, 1, 19, 15, 14, 4, 10, 6, 13, 1, 13, 10
Offset: 1

Views

Author

Deepak R. N (deepak_rama(AT)bigfoot.com)

Keywords

Comments

Period 12: repeat [10, 6, 13, 1, 13, 10, 10, 1, 19, 15, 14, 4]. - Joerg Arndt, Aug 15 2014

Examples

			a(7)=10 because July begins with the 10th letter.
		

Programs

  • Mathematica
    LetterNumber[DateValue[#,"MonthNameInitial"]]&/@DateRange[{2024,1,1},{2030,12,31},"Month"] (* or *) PadRight[{},120,{10,6,13,1,13,10,10,1,19,15,14,4}] (* Harvey P. Dale, Sep 10 2024 *)

Extensions

Corrected a(12n+8): August starts with 'A' and not 'H'. - Mark E. Shoulson, Aug 15 2014
a(20) corrected by Daniel Leary, Jul 26 2016

A090805 A simple recurrence with one error.

Original entry on oeis.org

1, 2, 6, 21, 85, 430, 2586, 18109, 144880, 1303929, 13039300, 143432311, 1721187744, 22375440685, 313256169604, 4698842544075, 75181480705216, 1278085171988689, 23005533095796420, 437105128820131999, 8742102576402640000, 183584154104455440021, 4038851390298019680484
Offset: 0

Views

Author

N. J. A. Sloane, Feb 12 2004

Keywords

Comments

I included this in the OEIS only because was published on a web page. The explanation is my own - perhaps the original proposer had a different explanation.

Examples

			1..add.1..multiply.by 1 -> 2
2..add.1..multiply.by 2 -> 6
6......1............. 3 -> 21
21.....1............. 4 -> 88 but here you make a mistake and instead multiply by 4 and add 1, getting 85
85.....1............. 5 -> 430
430....1............. 6 -> 2586
etc
		

References

  • Found on a puzzle page.

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + `if`(n=4, 1, n) end: a(0):= 1:
    seq(a(n), n=0..22);  # Alois P. Heinz, May 14 2021
  • Mathematica
    a={1};Do[n=Length[a];a=Append[a,If[n==4,Last[a]n+1,(Last[a]+1)n]],22];a (* Jake L Lande, Jul 28 2024 *)

Formula

a(0) = 1; a(n) = n*(a(n-1) + 1) but make an error if n = 4.
Hans Havermann points out that the first 7 terms could also be produced by the recurrence f[x] = f[x - 1]*(x - 1) + GCD[3*f[x - 1], (x - 1)] with f[1] = 1. (This gives the continuation 1, 2, 6, 21, 85, 430, 2586, 18103, 144825, 1303434, 13034342, ...) But given the nature of the other problems on this quiz, I think my explanation is more likely.

A107624 Numbers n such that every digit of n and n-th prime contains a loop (only digits 0,4,6,8,9 in n and n-th prime).

Original entry on oeis.org

80, 600, 669, 884, 4646, 4666, 4806, 4980, 6480, 6666, 6806, 6849, 8448, 8688, 9489, 9494, 40046, 40664, 40804, 49848, 64444, 64466, 68864, 68994, 69008, 69060, 69084, 69089, 69090, 69899, 440986, 440999, 444049, 444080, 464446, 464496, 464499, 466466, 466844
Offset: 1

Views

Author

Zak Seidov, May 18 2005

Keywords

Comments

Corresponding primes in A107625. Cf. A001744 Every digit contains a loop.

Crossrefs

Programs

  • Mathematica
    Do[id=Union[IntegerDigits[Prime[n]], IntegerDigits[n]];If[Count[id, 1]+Count[id, 2]+Count[id, 3]+Count[id, 5]+Count[id, 7]==0, Print[n]], {n, 10000}]
  • PARI
    is_a001744(n) = #setintersect(vecsort(digits(n), , 8), [1, 2, 3, 5, 7])==0
    is(n) = is_a001744(n) && is_a001744(prime(n)) \\ Felix Fröhlich, Sep 09 2019

Extensions

More terms from Felix Fröhlich, Sep 09 2019

A139138 Numbers divisible by at least two of their digits.

Original entry on oeis.org

11, 12, 15, 22, 24, 33, 36, 44, 48, 55, 66, 77, 88, 99, 101, 102, 104, 105, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 128, 131, 132, 135, 138, 140, 141, 142, 144, 145, 147, 148, 150, 151, 152, 153, 155, 156, 161, 162
Offset: 1

Views

Author

Jonathan Vos Post, Jun 05 2008

Keywords

Comments

Digits need not be distinct. This may be considered row 2 of an infinite array whose 1st row is A038770. Each such row is a subset of the ones above it.

Crossrefs

Programs

  • Mathematica
    fQ[n_] := Count[Mod[n, Flatten[IntegerDigits[n] /. {0 -> {}}]], 0] > 1; Select[ Range@ 170, fQ] (* Robert G. Wilson v, Jun 23 2014 *)
    Select[Range[200],Count[Divisible[#,Select[IntegerDigits[#], #>0&]], True]>1&] (* Harvey P. Dale, Dec 16 2015 *)
  • Python
    from sympy import factorint
    def ok(n): return sum(1 for d in map(int, str(n)) if d > 0 and n%d == 0) > 1
    print([k for k in range(163) if ok(k)]) # Michael S. Branicky, Nov 12 2021

Extensions

More terms from Alvin Hoover Belt, Apr 06 2009
Own omission (140) fixed by Alvin Hoover Belt, Apr 18 2009

A229381 The Simpsons's perfect number, Mersenne prime, and narcissistic number.

Original entry on oeis.org

8128, 8191, 8208
Offset: 1

Views

Author

Joe Sondow and Jonathan Sondow, Sep 23 2013

Keywords

Comments

The perfect number 8128, Mersenne prime 8191, and narcissistic number 8208 appeared together on the screen in the "Marge and Homer Turn a Couple Play" episode of Season 17 of The Simpsons.

References

  • S. Singh, The Simpsons and Their Mathematical Secrets, Bloomsbury Publishing, London, 2013, pp. 93-96, ISBN 9781408835302 / 9781408843734.

Crossrefs

Formula

a(1) = A000396(4), a(2) = A000668(5), a(3) = A005188(15).

A039790 Prime numbers prefixed with a '1'.

Original entry on oeis.org

12, 13, 15, 17, 111, 113, 117, 119, 123, 129, 131, 137, 141, 143, 147, 153, 159, 161, 167, 171, 173, 179, 183, 189, 197, 1101, 1103, 1107, 1109, 1113, 1127, 1131, 1137, 1139, 1149, 1151, 1157, 1163, 1167, 1173, 1179, 1181, 1191, 1193, 1197, 1199, 1211
Offset: 1

Views

Author

Kevin N. Stone (kevin.stone(AT)brainbashers.com)

Keywords

Comments

Replace every prime by the concatenation of its divisors. [Lekraj Beedassy, May 29 2009]

Crossrefs

Cf. A000040, A037278, A289866 (terms which are prime).

Programs

  • Mathematica
    Array[10^Floor[1 + Log10[#]] + # &@ Prime[#] &, 47] (* Michael De Vlieger, Apr 05 2021 *)
  • PARI
    a(n) = eval(concat(Str(1), Str(prime(n)))) \\ Felix Fröhlich, Apr 05 2021

Formula

a(n) = A037278(A000040(n)). [Lekraj Beedassy, May 29 2009]
Previous Showing 11-20 of 104 results. Next