cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A033540 a(n+1) = n*(a(n) + 1) for n >= 1, a(1) = 1.

Original entry on oeis.org

1, 2, 6, 21, 88, 445, 2676, 18739, 149920, 1349289, 13492900, 148421911, 1781062944, 23153818285, 324153456004, 4862301840075, 77796829441216, 1322546100500689, 23805829809012420, 452310766371235999, 9046215327424720000, 189970521875919120021
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • GAP
    a:=[1,2,6];; for n in [4..30] do a[n]:=(n+1)*a[n-1]-(2*n-3)*a[n-2] +(n-3)*a[n-3]; od; a; # G. C. Greubel, Oct 13 2019
  • Magma
    I:=[1,2,6]; [n le 3 select I[n] else (n+1)*Self(n-1)-(2*n-3)*Self(n-2)+(n-3)*Self(n-3): n in [1..30]]; // Vincenzo Librandi, Jun 21 2014
    
  • Maple
    seq(coeff(series( (1+x*exp(x))/(1-x), x, n+1)*n!, x, n), n = 0..30); # G. C. Greubel, Oct 13 2019
    # second Maple program:
    a:= proc(n) option remember;
          `if`(n=1, 1, (n-1)*(a(n-1)+1))
        end:
    seq(a(n), n=1..23);  # Alois P. Heinz, May 12 2021
  • Mathematica
    FoldList[#1*#2 + #2 &, 1, Range[19]] (* Robert G. Wilson v, Jul 07 2012 *)
    nxt[{a_,n_}]:={n(a+1),n+1}; Transpose[NestList[nxt,{1,1},20]][[1]] (* Harvey P. Dale, Jun 20 2014 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( (1+x*exp(x))/(1-x) )) \\ G. C. Greubel, Oct 13 2019
    
  • Sage
    [factorial(n)*( (1+x*exp(x))/(1-x) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Oct 13 2019
    

Formula

a(n) = n!*(1 +1/0! +1/1! +...+ 1/(n-1)!). - Jon Bentley (jlb(AT)research.bell-labs.com)
For n>=1, a(n+1) = floor((1+e)*n!) - 1. - Benoit Cloitre, Sep 07 2002
From Vladeta Jovovic, Feb 02 2003: (Start)
a(n) = n! + A007526(n).
E.g.f.: (1+x*exp(x))/(1-x). (End)
a(n) = (n+1)*a(n-1) - (2*n-3)*a(n-2) + (n-3)*a(n-3) for n>=4. - Jaume Oliver Lafont, Sep 11 2009
a(n) = n! + floor(e*n!) - 1, n>0. - Gary Detlefs, Jun 06 2010

A344262 a(0)=1; for n>0, a(n) = a(n-1)*n+1 if n is even, (a(n-1)+1)*n otherwise.

Original entry on oeis.org

1, 2, 5, 18, 73, 370, 2221, 15554, 124433, 1119906, 11199061, 123189682, 1478276185, 19217590418, 269046265853, 4035693987810, 64571103804961, 1097708764684354, 19758757764318373, 375416397522049106, 7508327950440982121, 157674886959260624562
Offset: 0

Views

Author

Amrit Awasthi, May 13 2021

Keywords

Examples

			a(0) = 1;
a(1) = (a(0)+1)*1 =  (1+1)*1 =   2;
a(2) = (a(1)*2)+1 =  (2*2)+1 =   5;
a(3) = (a(2)+1)*3 =  (5+1)*3 =  18;
a(4) = (a(3)*4)+1 = (18*4)+1 =  73;
a(5) = (a(4)+1)*5 = (73+1)*5 = 370.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^(n mod 2) end: a(0):= 1:
    seq(a(n), n=0..22);  # Alois P. Heinz, May 14 2021
  • Mathematica
    a[1] = 1; a[n_] := a[n] = If[OddQ[n], (n - 1)*a[n - 1] + 1, (n - 1)*(a[n - 1] + 1)]; Array[a, 25] (* Amiram Eldar, May 13 2021 *)

Formula

E.g.f.: (x+1)*cosh(x)/(1-x). - Alois P. Heinz, May 14 2021
Lim_{n->infinity} a(n)/n! = 2*cosh(1) = A137204 = 2*A073743. - Amrit Awasthi, May 15 2021
a(n) = A344317(n) - A155521(n-1) for n > 0. - Alois P. Heinz, May 18 2021

A344229 a(n) = n*a(n-1) + n^signum(n mod 4), a(0) = 1.

Original entry on oeis.org

1, 2, 6, 21, 85, 430, 2586, 18109, 144873, 1303866, 13038670, 143425381, 1721104573, 22374359462, 313241032482, 4698615487245, 75177847795921, 1278023412530674, 23004421425552150, 437084007085490869, 8741680141709817381, 183575282975906165022
Offset: 0

Views

Author

Alois P. Heinz, May 12 2021

Keywords

Comments

This sequence is one of many possible solutions to puzzle 16 on the Meerdaelquiz puzzle page, cf. the Delestinne link and A090805.

Crossrefs

Programs

  • Maple
    a:= proc(n) a(n):= n*a(n-1) + n^signum(n mod 4) end: a(0):= 1:
    seq(a(n), n=0..23);
Showing 1-3 of 3 results.