A019464
Multiply by 1, add 1, multiply by 2, add 2, etc., start with 1.
Original entry on oeis.org
1, 1, 2, 4, 6, 18, 21, 84, 88, 440, 445, 2670, 2676, 18732, 18739, 149912, 149920, 1349280, 1349289, 13492890, 13492900, 148421900, 148421911, 1781062932, 1781062944, 23153818272, 23153818285, 324153455990, 324153456004, 4862301840060, 4862301840075, 77796829441200
Offset: 0
-
a019464 n = a019464_list !! n
a019464_list = 1 : concat (unfoldr ma (1, [1, 1])) where
ma (x, [_, j]) = Just (ij', (x + 1, ij')) where ij' = [x * j, x * j + x]
-- Reinhard Zumkeller, Nov 14 2011
-
a[n_?EvenQ] := n/2 + a[n-1]; a[n_?OddQ] := (n+1)*a[n-1]/2;
a[0] = 1; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Nov 15 2011 *)
-
A019464(n,a=1)={for(i=2,n+1,if(bittest(i,0),a+=i\2,a*=i\2));a} \\ M. F. Hasler, Feb 25 2018
A344262
a(0)=1; for n>0, a(n) = a(n-1)*n+1 if n is even, (a(n-1)+1)*n otherwise.
Original entry on oeis.org
1, 2, 5, 18, 73, 370, 2221, 15554, 124433, 1119906, 11199061, 123189682, 1478276185, 19217590418, 269046265853, 4035693987810, 64571103804961, 1097708764684354, 19758757764318373, 375416397522049106, 7508327950440982121, 157674886959260624562
Offset: 0
a(0) = 1;
a(1) = (a(0)+1)*1 = (1+1)*1 = 2;
a(2) = (a(1)*2)+1 = (2*2)+1 = 5;
a(3) = (a(2)+1)*3 = (5+1)*3 = 18;
a(4) = (a(3)*4)+1 = (18*4)+1 = 73;
a(5) = (a(4)+1)*5 = (73+1)*5 = 370.
-
a:= proc(n) a(n):= n*a(n-1) + n^(n mod 2) end: a(0):= 1:
seq(a(n), n=0..22); # Alois P. Heinz, May 14 2021
-
a[1] = 1; a[n_] := a[n] = If[OddQ[n], (n - 1)*a[n - 1] + 1, (n - 1)*(a[n - 1] + 1)]; Array[a, 25] (* Amiram Eldar, May 13 2021 *)
A038159
a(n) = n*a(n-1) + 1, a(0) = 2.
Original entry on oeis.org
2, 3, 7, 22, 89, 446, 2677, 18740, 149921, 1349290, 13492901, 148421912, 1781062945, 23153818286, 324153456005, 4862301840076, 77796829441217, 1322546100500690, 23805829809012421, 452310766371236000, 9046215327424720001, 189970521875919120022
Offset: 0
G.f. = 2 + 3*x + 7*x^2+ 22*x^3 + 89*x^4 + 446*x^5 + 2677*x^6 + 18740*x^7 + ...
-
a[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (1 + Exp[x]) / (1 - x), {x, 0, n}]] (* Michael Somos, Sep 04 2013 *)
Range[0, 20]! CoefficientList[Series[(1 + Exp[x])/(1 - x), {x, 0, 20}], x] (* Vincenzo Librandi, Feb 17 2014 *)
-
{a(n) = if( n<0, 0, n! * sum(k=0, n, 1/k!, 1))}; /* Michael Somos, Sep 04 2013 */
A090805
A simple recurrence with one error.
Original entry on oeis.org
1, 2, 6, 21, 85, 430, 2586, 18109, 144880, 1303929, 13039300, 143432311, 1721187744, 22375440685, 313256169604, 4698842544075, 75181480705216, 1278085171988689, 23005533095796420, 437105128820131999, 8742102576402640000, 183584154104455440021, 4038851390298019680484
Offset: 0
1..add.1..multiply.by 1 -> 2
2..add.1..multiply.by 2 -> 6
6......1............. 3 -> 21
21.....1............. 4 -> 88 but here you make a mistake and instead multiply by 4 and add 1, getting 85
85.....1............. 5 -> 430
430....1............. 6 -> 2586
etc
-
a:= proc(n) a(n):= n*a(n-1) + `if`(n=4, 1, n) end: a(0):= 1:
seq(a(n), n=0..22); # Alois P. Heinz, May 14 2021
-
a={1};Do[n=Length[a];a=Append[a,If[n==4,Last[a]n+1,(Last[a]+1)n]],22];a (* Jake L Lande, Jul 28 2024 *)
A165792
a(0)=1, a(n) = n*(a(n-1)+2).
Original entry on oeis.org
1, 3, 10, 36, 152, 770, 4632, 32438, 259520, 2335698, 23357000, 256927022, 3083124288, 40080615770, 561128620808, 8416929312150, 134670868994432, 2289404772905378, 41209285912296840, 782976432333639998, 15659528646672800000, 328850101580128800042
Offset: 0
-
FoldList[#1*#2 + 2 #2 &, 1, Range[19]](* Robert G. Wilson v, Jul 07 2012 *)
NestList[{#[[1]]+1,(#[[1]]+1)(#[[2]]+2)}&,{0,1},20][[All,2]] (* Harvey P. Dale, Jul 03 2021 *)
A189243
Number of ways to dissect a nonsquare rectangle into n rectangles with equal area.
Original entry on oeis.org
1, 2, 6, 21, 88, 390, 1914
Offset: 1
There are 6 ways to form a rectangle from 3 rectangles with same area:
+-----+ +-+-+-+ +-----+ +--+--+ +-+---+ +---+-+
| | | | | | | | | | | | | | | | |
+-----+ | | | | +--+--+ | | | | | | | | |
| | | | | | | | | | | | | +---+ +---+ |
+-----+ | | | | | | | +--+--+ | | | | | |
| | | | | | | | | | | | | | | | |
+-----+ +-+-+-+ +--+--+ +-----+ +-+---+ +---+-+
So a(3)=6.
From _Geoffrey H. Morley_, Dec 03 2012: (Start)
b(n) in the given formula is the sum of the appropriate tilings from certain 'frames'. A number that appears in a subrectangle in a frame is the number of rectangles into which the subrectangle is to be divided. Tilings are also counted that are from a reflection and/or half-turn of the frame.
For n = 6 there are 3(X2) frames:
+---+-+-+ +-+-----+ +-+-----+
| | | | | | | | | |
| | | | | +---+-+ | | 2 |
+-+-+ | | | | | | | | |
| | | | | | +---+ | | +---+-+
| | +-+-+ | | | | | | | |
| | | | +-+---+ | +-+---+ |
| | | | | | | | | |
+-+-+---+ +-----+-+ +-----+-+
2 ways 2 ways 8 ways
The only other frames which yield desired tilings are obtained by rotating each frame above by 90 degrees and scaling it to fit a rectangle with the inverse aspect ratio.
So b(6) = 2(2+2+8) = 24, and a(6) = b(6)+4*a(5)+2*a(4)-4*a(3)-2*a(2) = 24+4*88+2*21-4*6-2*2 = 390.
For n = 7 we can use 7(X2) frames:
+---+--+
| | |
| | |
| 4 |3 |
| | |
| | |
| | |
+---+--+
63 ways [of creating tilings counted by b(7)]
+---+--+ +-+----+ +--+---+ +-----++ +--+---+ +----+-+
| | | | | | | | | ++----+| | | | ++-+-+ |
| +-++ | +---++ |2 | 2 | || || | +-+-+ || | | |
| 3 | || |2| || | +--++ || || |2 | | | || | | |
| | || | | 2 || | | || || 3 || | | | | || +-+-+
| | || | | || +--+--+| || || +--+-+2| || | |
+---+-+| +-+---+| | || |+----++ | | | |+-+---+
+-----++ +-----++ +-----++ ++-----+ +----+-+ ++-----+
24 ways 16 ways 12 ways 10 ways 8 ways 4 ways
As for n = 6, these are only half the frames and tilings.
So b(7) = 2(63+24+16+12+10+8+4) = 274, and a(7) = b(7)+4*a(6)+2*a(5)-4*a(4)-2*a(3) = 274+4*390+2*88-4*21-2*6 = 1914.
(End)
See the analogous sequences
A219861 and
A108066 where we count dissections up to symmetry of nonsquare rectangles and squares respectively. -
Geoffrey H. Morley, Dec 03 2012
A344229
a(n) = n*a(n-1) + n^signum(n mod 4), a(0) = 1.
Original entry on oeis.org
1, 2, 6, 21, 85, 430, 2586, 18109, 144873, 1303866, 13038670, 143425381, 1721104573, 22374359462, 313241032482, 4698615487245, 75177847795921, 1278023412530674, 23004421425552150, 437084007085490869, 8741680141709817381, 183575282975906165022
Offset: 0
A368762
a(n) = n! * (1 + Sum_{k=0..n} binomial(k+1,2) / k!).
Original entry on oeis.org
1, 2, 7, 27, 118, 605, 3651, 25585, 204716, 1842489, 18424945, 202674461, 2432093610, 31617217021, 442641038399, 6639615576105, 106233849217816, 1805975436703025, 32507557860654621, 617643599352437989, 12352871987048759990, 259410311728023960021
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace((1+x*sum(k=0, 1, binomial(1, k)*x^k/(k+1)!)*exp(x))/(1-x)))
A368763
a(n) = n! * (1 + Sum_{k=0..n} binomial(k+2,3) / k!).
Original entry on oeis.org
1, 2, 8, 34, 156, 815, 4946, 34706, 277768, 2500077, 25000990, 275011176, 3300134476, 42901748643, 600624481562, 9009367224110, 144149875586576, 2450547884972761, 44109861929510838, 838087376660707252, 16761747533214146580, 351996698197497079951
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace((1+x*sum(k=0, 2, binomial(2, k)*x^k/(k+1)!)*exp(x))/(1-x)))
A368764
a(n) = n! * (1 + Sum_{k=0..n} binomial(k+3,4) / k!).
Original entry on oeis.org
1, 2, 9, 42, 203, 1085, 6636, 46662, 373626, 3363129, 33632005, 369953056, 4439438037, 57712696301, 807977750594, 12119666261970, 193914660195396, 3296549223326577, 59337886019884371, 1127419834377810364, 22548396687556216135, 473516330438680549461
Offset: 0
-
my(N=30, x='x+O('x^N)); Vec(serlaplace((1+x*sum(k=0, 3, binomial(3, k)*x^k/(k+1)!)*exp(x))/(1-x)))
Showing 1-10 of 14 results.
Comments