,10, has authored 11055 sequences. Here are the ten most recent ones:
A386947
A variant of Recamán's sequence (A005132): a(0) = 0; for n > 0, a(n) = a(n-1) - n if nonnegative and not already in the sequence, otherwise a(n) = a(n-1) + n + 2.
Original entry on oeis.org
0, 3, 1, 6, 2, 9, 17, 10, 20, 11, 23, 12, 26, 13, 29, 14, 32, 15, 35, 16, 38, 61, 39, 64, 40, 67, 41, 70, 42, 73, 43, 76, 44, 79, 45, 82, 46, 85, 47, 8, 50, 93, 51, 96, 52, 7, 55, 104, 56, 107, 57, 110, 58, 5, 61, 118, 62, 121, 63, 4, 66
Offset: 0
-
a[n_] := a[n] = If[a[n-1] >= n && FreeQ[Table[a[k], {k, 0, n-1}], a[n-1] - n], a[n-1] - n, a[n-1] + n + 2]; a[0] = 0; Array[a, 100, 0] (* Amiram Eldar, Aug 22 2025 *)
A386946
a(n) is the number of imprimitive (periodic) 2n-bead balanced binary necklaces.
Original entry on oeis.org
0, 0, 1, 1, 2, 1, 5, 1, 10, 4, 27, 1, 88, 1, 247, 29, 810, 1, 2780, 1, 9260, 249, 32067, 1, 113520, 26, 400025, 2704, 1432868, 1, 5179905, 1, 18784170, 32069, 68635479, 271, 252201136, 1, 930138523, 400027, 3446168660, 1, 12817096533, 1, 47820447036, 5173304
Offset: 0
n | A003239(n) A022553(n) | a(n)
0 | 1 1 | 0
1 | 1 1 | 0
2 | 2 1 | 1
3 | 4 3 | 1
4 | 10 8 | 2
5 | 26 25 | 1
6 | 80 75 | 5
7 | 246 245 | 1
8 | 810 800 | 10
9 | 2704 2700 | 4
10 | 9252 9225 | 27
11 | 32066 32065 | 1
12 | 112720 112632 | 88
13 | 400024 400023 | 1
14 | 1432860 1432613 | 247
15 | 5170604 5170575 | 29
16 | 18784170 18783360 | 810
There are A003239(8) = 810 balanced binary necklaces of length 16. A022553(8) = 800 of them are primitive. a(n) = 10 are not. See A387130 for a list.
A386950
A sequence constructed by greedily sampling the pdf (H(10)-H(i))/10, where H(n) is the n-th Harmonic number and the support is [0,9], to minimize discrepancy.
Original entry on oeis.org
0, 1, 0, 2, 3, 0, 1, 4, 0, 2, 5, 1, 0, 3, 0, 1, 6, 2, 4, 0, 1, 0, 3, 2, 7, 0, 5, 1, 0, 2, 4, 1, 3, 0, 0, 1, 6, 2, 0, 3, 5, 1, 4, 8, 0, 2, 0, 1, 0, 3, 2, 1, 0, 4, 7, 0, 5, 1, 6, 2, 3, 0, 1, 0, 2, 4, 0, 1, 3, 0, 2, 5, 1, 0, 0, 3, 4, 1, 6, 2, 0, 1, 0, 7, 2, 3, 0
Offset: 1
Let p(k) denote the probability of k and c(k) denote the number of occurrences of k among the first n-1 terms.
We take the ratio of the actual occurrences c(k)+1 to the probability and pick the one with the lowest value.
Since p(k) is monotonic decreasing, we only need to compute c(k) once we see c(k-1).
| n | (c(0)+1)/p(0) | (c(1)+1)/p(1) | (c(2)+1)/p(2) | choice |
|---|---------------|---------------|---------------|--------|
| 1 | 3.414 | - | - | 0 |
| 2 | 6.828 | 5.181 | - | 1 |
| 3 | 6.828 | 10.362 | 6.998 | 0 |
| 4 | 10.242 | 10.362 | 6.998 | 2 |
-
samplePDF[numCoeffs_] := Module[{coeffs, counts},
coeffs = {}; counts = ConstantArray[0, 10];
Do[
minTime = Infinity;
Do[
time = 10*(counts[[i]] + 1)/(HarmonicNumber[10] - HarmonicNumber[i - 1]);
If[time < minTime,minIndex = i;minTime = time],{i, 1, 10}];
counts[[minIndex]] += 1;
coeffs = Append[coeffs, minIndex - 1],
{numCoeffs}
];
coeffs
]
A386950 = samplePDF[120]
-
from sympy import harmonic
def sample_pdf(num_coeffs):
coeffs, counts = [], [0]*10
for _ in range(num_coeffs):
min_time = float('inf')
for i, count in enumerate(counts):
time = 10*(count+1) / (harmonic(10)-harmonic(i))
if time < min_time:
min_index, min_time = i, time
counts[min_index] += 1
coeffs.append(min_index)
return coeffs
A386950 = sample_pdf(120)
A386953
Total number of entries in rows 0,1,...,n of Pascal's triangle not divisible by 9.
Original entry on oeis.org
1, 3, 6, 10, 15, 21, 28, 36, 45, 49, 57, 69, 78, 90, 105, 119, 135, 153, 160, 174, 195, 209, 228, 252, 273, 297, 324, 328, 336, 348, 360, 378, 402, 422, 450, 486, 495, 513, 540, 560, 588, 624, 655, 693, 738, 752, 780, 822, 850, 888, 936, 978, 1026, 1080, 1087
Offset: 0
-
import re
from gmpy2 import digits
def A386953(n):
c = 0
for m in range(n+1):
s = digits(m,3)
n1 = s.count('1')
n2 = s.count('2')
n01 = s.count('10')
n02 = s.count('20')
n11 = len(re.findall('(?=11)',s))
n12 = s.count('21')
c += ((3*((1+n01<<2)+n11)+((n02<<2)+n12<<2))*3**n2<>2
return c
A386952
Number of entries in the n-th row of Pascal's triangle not divisible by 9.
Original entry on oeis.org
1, 2, 3, 4, 5, 6, 7, 8, 9, 4, 8, 12, 9, 12, 15, 14, 16, 18, 7, 14, 21, 14, 19, 24, 21, 24, 27, 4, 8, 12, 12, 18, 24, 20, 28, 36, 9, 18, 27, 20, 28, 36, 31, 38, 45, 14, 28, 42, 28, 38, 48, 42, 48, 54, 7, 14, 21, 20, 31, 42, 33, 48, 63, 14, 28, 42, 31, 44, 57, 48
Offset: 0
-
import re
from gmpy2 import digits
def A386952(n):
s = digits(n,3)
n1 = s.count('1')
n2 = s.count('2')
n01 = s.count('10')
n02 = s.count('20')
n11 = len(re.findall('(?=11)',s))
n12 = s.count('21')
return ((3*((1+n01<<2)+n11)+((n02<<2)+n12<<2))*3**n2<>2
Original entry on oeis.org
2, 6, 12, 30, 72, 210, 240, 420, 1260, 6480, 50400, 147840, 510510, 4324320
Offset: 1
a(1) = 2 = 1*2 = 2^1.
a(2) = 6 = 2*3 = 2^1 * 3^1.
a(3) = 12 = 3*4 = 2^2 * 3^1.
a(4) = 30 = 5*6 = 2^1 * 3^1 * 5^1.
a(5) = 72 = 8*9 = 2^3 * 3^2.
a(6) = 210 = 14*15 = 2^1 * 3^1 * 5^1 * 7^1.
-
Select[FactorialPower[Range[0, 3000], 2], (Max@Differences[(f = FactorInteger[#])[[;; , 2]]] < 1 && f[[-1, 1]] == Prime[Length[f]]) &] (* Amiram Eldar, Aug 10 2025 *)
-
from sympy import prime, factorint
def is_Hardy_Ramanujan(n):
factors = factorint(n)
p_idx = len(factors)
if list(factors.keys())[-1] != prime(p_idx):
return False
expos = list(factors.values())
e = expos[0]
for i in range(1, p_idx):
if expos[i] > e:
return False
e = expos[i]
return True
print([ n*(n+1) for n in range(1, 10_000) if is_Hardy_Ramanujan(n*(n+1))])
Original entry on oeis.org
6, 24, 60, 120, 210, 720, 3360, 9240, 166320, 970200, 43243200
Offset: 1
a(1) = 6 = 1*2*3 = 2^1 * 3^1.
a(2) = 24 = 2*3*4 = 2^3 * 3^1.
a(3) = 60 = 3*4*5 = 2^2 * 3^1 * 5^1.
a(4) = 120 = 4*5*6 = 2^3 * 3^1 * 5^1.
a(5) = 210 = 5*6*7 = 2^1 * 3^1 * 5^1 * 7^1.
a(6) = 720 = 8*9*10 = 2^4 * 3^2 * 5^1.
-
Select[FactorialPower[Range[0, 1000], 3], (Max@ Differences[(f = FactorInteger[#])[[;; , 2]]] < 1 && f[[-1, 1]] == Prime[Length[f]]) &] (* Amiram Eldar, Aug 10 2025 *)
-
from sympy import prime, factorint
def is_Hardy_Ramanujan(n):
factors = factorint(n)
p_idx = len(factors)
if list(factors.keys())[-1] != prime(p_idx):
return False
expos = list(factors.values())
e = expos[0]
for i in range(1, p_idx):
if expos[i] > e:
return False
e = expos[i]
return True
print([ n*(n+1)*(n+2) for n in range(1, 1000) if is_Hardy_Ramanujan(n*(n+1)*(n+2))])
A386949
Irregular triangle whose n-th row lists the nonzero terms of the n-th column of A386755.
Original entry on oeis.org
1, 1, 2, 2, 1, 3, 3, 3, 3, 1, 2, 2, 4, 4, 1, 5, 5, 5, 5, 5, 5, 1, 2, 2, 3, 3, 6, 6, 6, 6, 1, 7, 7, 7, 7, 7, 7, 7, 7, 1, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8, 1, 3, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9, 1, 2, 2, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10, 1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
Offset: 1
Triangle begins:
1;
1, 2, 2;
1, 3, 3, 3, 3;
1, 2, 2, 4, 4;
1, 5, 5, 5, 5, 5, 5;
1, 2, 2, 3, 3, 6, 6, 6, 6;
1, 7, 7, 7, 7, 7, 7, 7, 7;
1, 2, 2, 4, 4, 4, 4, 4, 4, 8, 8, 8, 8;
1, 3, 3, 3, 3, 9, 9, 9, 9, 9, 9, 9, 9;
1, 2, 2, 5, 5, 5, 5, 10, 10, 10, 10, 10, 10;
...
-
orow(n) = my(v=vector(n), m=n); for(k=1, n, my(keepm = m); while(m%k, m--); if (m == 0, keepm=m, v[m] = k; m--); ); v; \\ A386755
nrow(n) = my(ok=1, k=1, last=-1, list=List(), r); while(ok, r=row(k); if ((#r >= n) && r[n], listput(list, r[n])); k++; if (#r>=n, if ((last==n) && (r[n]==0), ok = 0, last = r[n]))); Vec(list);
A386636
Triangle read by rows where T(n,k) is the number of inseparable type set partitions of {1..n} into k blocks.
Original entry on oeis.org
0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 4, 0, 0, 0, 1, 5, 0, 0, 0, 0, 1, 21, 15, 0, 0, 0, 0, 1, 28, 21, 0, 0, 0, 0, 0, 1, 92, 196, 56, 0, 0, 0, 0, 0, 1, 129, 288, 84, 0, 0, 0, 0, 0, 0, 1, 385, 1875, 1380, 210, 0, 0, 0, 0, 0, 0, 1, 561, 2860, 2145, 330, 0, 0, 0, 0, 0, 0
Offset: 0
Row n = 6 counts the following set partitions:
. {123456} {1}{23456} {1}{2}{3456} . . .
{12}{3456} {1}{2345}{6}
{13}{2456} {1}{2346}{5}
{14}{2356} {1}{2356}{4}
{15}{2346} {1}{2456}{3}
{16}{2345} {1234}{5}{6}
{1234}{56} {1235}{4}{6}
{1235}{46} {1236}{4}{5}
{1236}{45} {1245}{3}{6}
{1245}{36} {1246}{3}{5}
{1246}{35} {1256}{3}{4}
{1256}{34} {1345}{2}{6}
{1345}{26} {1346}{2}{5}
{1346}{25} {1356}{2}{4}
{1356}{24} {1456}{2}{3}
{1456}{23}
{12345}{6}
{12346}{5}
{12356}{4}
{12456}{3}
{13456}{2}
Triangle begins:
0
0 0
0 1 0
0 1 0 0
0 1 4 0 0
0 1 5 0 0 0
0 1 21 15 0 0 0
0 1 28 21 0 0 0 0
0 1 92 196 56 0 0 0 0
0 1 129 288 84 0 0 0 0 0
0 1 385 1875 1380 210 0 0 0 0 0
A000670 counts ordered set partitions.
A279790 counts disjoint families on strongly normal multisets.
A386587 counts disjoint families of strict partitions of each prime exponent.
Cf.
A008284,
A072233,
A097805,
A106351,
A116861,
A124762,
A129506,
A190945,
A239455,
A335125,
A374252,
A386575.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
stnseps[stn_]:=Select[Permutations[Union@@stn],And@@Table[Position[stn,#[[i]]][[1,1]]!=Position[stn,#[[i+1]]][[1,1]],{i,Length[#]-1}]&]
Table[Length[Select[sps[Range[n]],Length[#]==k&&stnseps[#]=={}&]],{n,0,5},{k,0,n}]
A386635
Triangle read by rows where T(n,k) is the number of separable type set partitions of {1..n} into k blocks.
Original entry on oeis.org
1, 0, 1, 0, 0, 1, 0, 0, 3, 1, 0, 0, 3, 6, 1, 0, 0, 10, 25, 10, 1, 0, 0, 10, 75, 65, 15, 1, 0, 0, 35, 280, 350, 140, 21, 1, 0, 0, 35, 770, 1645, 1050, 266, 28, 1, 0, 0, 126, 2737, 7686, 6951, 2646, 462, 36, 1, 0, 0, 126, 7455, 32725, 42315, 22827, 5880, 750, 45, 1
Offset: 0
Row n = 4 counts the following set partitions:
. . {{1,2},{3,4}} {{1},{2},{3,4}} {{1},{2},{3},{4}}
{{1,3},{2,4}} {{1},{2,3},{4}}
{{1,4},{2,3}} {{1},{2,4},{3}}
{{1,2},{3},{4}}
{{1,3},{2},{4}}
{{1,4},{2},{3}}
Triangle begins:
1
0 1
0 0 1
0 0 3 1
0 0 3 6 1
0 0 10 25 10 1
0 0 10 75 65 15 1
0 0 35 280 350 140 21 1
Column k = 2 appears to be
A128015.
A000670 counts ordered set partitions.
A386587 counts disjoint families of strict partitions of each prime exponent.
Cf.
A072233,
A097805,
A106351,
A116861,
A190945,
A279790,
A333382,
A335125,
A374252,
A386575,
A386578.
-
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
stnseps[stn_]:=Select[Permutations[Union@@stn],And@@Table[Position[stn,#[[i]]][[1,1]]!=Position[stn,#[[i+1]]][[1,1]],{i,Length[#]-1}]&];
Table[Length[Select[sps[Range[n]],Length[#]==k&&stnseps[#]!={}&]],{n,0,5},{k,0,n}]
Comments