A160772 Number of nodes (or order) of a graph model obtained using an automata scheme on sets of order prime(n) >= 5 and in which all not halt states are linked by arcs (edges).
13, 31, 91, 133, 241, 307, 463, 757, 871, 1261, 1561, 1723, 2071, 2653, 3307, 3541, 4291, 4831, 5113, 6007, 6643, 7657, 9121, 9901, 10303, 11131, 11557, 12433, 15751, 16771, 18361, 18907, 21757, 22351, 24181, 26083, 27391, 29413, 31507, 32221, 35911, 36673
Offset: 3
Keywords
Examples
For prime(3) = 5: a(n) = (3)(4)+1 = 13; for prime(4) = 7: a(n) = (5)(6)+1 = 31
References
- A. A. Ibrahim, Some Transformation Schemes Involving the Special (132) - avoiding Permutation Patterns and a Binary Coding: An Algorithmic Approach Asian Journal of Algebra 1 (1):10-14, Asian Network for Scientific Information (ANSI), Pakistan (2008).
- A. A. Ibrahim and M. S. Audu, Some Group theoretic Properties of Certain Class of (123) and (132)-Avoiding Patterns Numbers: an enumeration scheme, African journal Natural Sciences Vol. 8: 79-84 (2005).
- A. A. Ibrahim, and M. S. Audu, On Stable Variety of Cayley Graphs For Efficient Interconnection Networks Proceedings of Annual National Conference of Mathematical Association of Nigeria (MAN) held at Federal College of Education Technical, Gusau 26th- 30th August, 2008:156-161 (2008).
Links
- G. C. Greubel, Table of n, a(n) for n = 3..10000
Programs
-
Magma
[(NthPrime(n)-2)*(NthPrime(n)-1) + 1: n in [3..30]]; // G. C. Greubel, Apr 26 2018
-
Mathematica
Table[(Prime[n] - 2) (Prime[n] - 1) + 1, {n, 3, 50}] (* T. D. Noe, Dec 30 2012 *)
-
PARI
for(n=3, 50, print1((prime(n)-2)*(prime(n)-1) + 1, ", ")) \\ G. C. Greubel, Apr 26 2018
Formula
a(n) = (prime(n)-2)*(prime(n)-1) + 1.
Extensions
Terms changed by T. D. Noe, Dec 30 2012
Comments