cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 148 results. Next

A000928 Irregular primes: primes p such that at least one of the numerators of the Bernoulli numbers B_2, B_4, ..., B_{p-3} (A000367) is divisible by p.

Original entry on oeis.org

37, 59, 67, 101, 103, 131, 149, 157, 233, 257, 263, 271, 283, 293, 307, 311, 347, 353, 379, 389, 401, 409, 421, 433, 461, 463, 467, 491, 523, 541, 547, 557, 577, 587, 593, 607, 613, 617, 619, 631, 647, 653, 659, 673, 677, 683, 691, 727, 751, 757, 761, 773, 797, 809, 811, 821, 827, 839, 877, 881, 887, 929, 953, 971, 1061
Offset: 1

Views

Author

Keywords

Comments

A prime is irregular if and only if the integer Sum_{j=1..p-1} cot^(r)(j*Pi/p)*cot(j*Pi/p) is divisible by p for some even r <= p-5. (See G. Almkvist 1994.) - Peter Luschny, Jun 24 2012
Jensen proved in 1915 that there are infinitely many irregular primes. It is not known if there are infinitely many regular primes.
"The pioneering mathematician Kummer, over the period 1847-1850, used his profound theory of cyclotomic fields to establish a certain class of primes called 'regular' primes. ... It is known that there exist an infinity of irregular primes; in fact it is a plausible conjecture that only an asymptotic fraction 1/Sqrt(e) ~ 0.6 of all primes are regular." [Ribenboim]
Johnson (1975) mentions "consecutive irregular prime pairs", meaning an irregular prime p such that, for some integer k <= 2*p-3, p divides the numerators of the Bernoulli numbers B_{2k} and B_{2k+2}. He gives the examples p = 491 (with k=168) and p = 587. No other examples are known. - N. J. A. Sloane, May 01 2021, following a suggestion from Felix Fröhlich.
An odd prime p is irregular if and only if p divides the class number of Q(zeta_p), where zeta_n = exp(2*Pi*i/n); that is, for k >= 2, p = prime(k) is irregular if and only if p divides A055513(k). For example, 37 is irregular since Q(zeta_37) has class number A055513(12) = 37. - Jianing Song, Sep 13 2022

References

  • G. Almkvist, Wilf's conjecture and a generalization, In: The Rademacher legacy to mathematics, 211-233, Contemp. Math., 166, Amer. Math. Soc., Providence, RI, 1994.
  • Z. I. Borevich and I. R. Shafarevich, Number Theory. Academic Press, NY, 1966, pp. 377, 425-430 (but there are errors in the tables).
  • R. E. Crandall, Mathematica for the Sciences, Addison-Wesley Publishing Co., Redwood City, CA, 1991, pp. 248-255.
  • J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 59, p. 21, Ellipses, Paris 2008.
  • H. M. Edwards, Fermat's Last Theorem, Springer, 1977, see p. 244.
  • J. Neukirch, Algebraic Number Theory, Springer, 1999, p. 38.
  • Paulo Ribenboim, The Book of Prime Number Records. Springer-Verlag, NY, 2nd ed., 1989, p. 257.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 225.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • L. C. Washington, Introduction to Cyclotomic Fields, Springer, p. 350.

Crossrefs

Cf. A091887 (irregularity index of the n-th irregular prime).

Programs

  • Maple
    A000928_list := proc(len)
    local ab, m, F, p, maxp; F := {};
    for m from 2 by 2 to len do
       p := nextprime(m+1);
       ab := abs(bernoulli(m));
       maxp := min(ab, len);
       while p <= maxp do
          if ab mod p = 0
          then F := F union {p} fi;
          p := nextprime(p);
       od;
    od;
    sort(convert(F,list)) end:
    A000928_list(1000); # Peter Luschny, Apr 25 2011
  • Mathematica
    fQ[p_] := Block[{k = 1}, While[ 2k <= p-3 && Mod[ Numerator@ BernoulliB[ 2k], p] != 0, k++]; 2k <= p-3]; Select[ Prime@ Range@ 137, fQ] (* Robert G. Wilson v, Jun 25 2012 *)
    Select[Prime[Range[200]],MemberQ[Mod[Numerator[BernoulliB[2*Range[(#-1)/ 2]]], #],0]&] (* Harvey P. Dale, Mar 02 2018 *)
  • PARI
    a(n)=local(p);if(n<1,0,p=a(n-1)+(n==1);while(p=nextprime(p+2), forstep(i=2,p-3,2,if(numerator(bernfrac(i))%p==0,break(2))));p) /* Michael Somos, Feb 04 2004 */
    
  • Python
    from sympy import bernoulli, primerange
    def ok(n):
        k = 1
        while 2*k <= n - 3 and bernoulli(2*k).numerator % n:
            k+=1
        return 2*k <= n - 3
    print([n for n in primerange(2, 1101) if ok(n)]) # Indranil Ghosh, Jun 27 2017, after Robert G. Wilson v

A300711 a(n) = A000367(n)/A001067(n).

Original entry on oeis.org

1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 7, 5, 1, 17, 1, 19, 1, 1, 11, 23, 1, 25, 13, 1, 7, 29, 1, 31, 1, 11, 17, 35, 1, 37, 19, 13, 1, 41, 1, 43, 11, 5, 23, 47, 1, 49, 1, 17, 13, 53, 1, 5, 7, 19, 29, 59, 1, 61, 31, 1, 1, 65, 11, 67, 17, 23, 7, 71, 1, 73, 37
Offset: 1

Views

Author

Bernd C. Kellner, Mar 11 2018

Keywords

Comments

a(n) is the trivial factor of the numerator of Bernoulli(2n) that divides 2n.
The remaining part of the (unsigned) numerator equals a product of powers of irregular primes, or 1 if and only if n = 1, 2, 3, 4, 5, 7.
Alternatively, a(n) is the product over all prime powers p^e, where p^e is the highest power of p dividing 2n and p-1 does not divide 2n.

Examples

			a(5) = 5, since Bernoulli(10) = 5/66 and Bernoulli(10)/10 = 1/132.
		

Crossrefs

A111008 equals the first entries and slightly differs, see a(35).

Programs

  • Julia
    using Nemo
    function A300711(n)
        b = bernoulli(n)
        div(numerator(b), numerator(b*QQ(1,n)))
    end
    [A300711(n) for n in 2:2:148] |> println # Peter Luschny, Mar 11 2018
    
  • Maple
    A300711 := proc(n) local P, F, f, divides; divides := (a,b) -> is(irem(b,a) = 0):
    P := 1; F := ifactors(2*n)[2]; for f in F do if not divides(f[1]-1, 2*n) then
    P := P*f[1]^f[2] fi od; P end: seq(A300711(n), n=1..74); # Peter Luschny, Mar 12 2018
  • Mathematica
    Table[Numerator[BernoulliB[n]]/Numerator[BernoulliB[n]/n], {n, 2, 100, 2}]
  • PARI
    a(n) = gcd(numerator(bernfrac(2*n)), 2*n) \\ Jianing Song, Apr 05 2021
    
  • PARI
    upto(N)=bernvec(N);forstep(n=2,2*N,2,print1(gcd(numerator(bernfrac(n)), n),", ")) \\ Jeppe Stig Nielsen, Jun 22 2023

Formula

a(n) = numerator(Bernoulli(2n))/numerator(Bernoulli(2n)/(2n)).
a(n) * A195989(n) = n. - Peter Luschny, Mar 12 2018
From Jianing Song, Apr 05 2021: (Start)
a(n) = gcd(numerator(Bernoulli(2n)), 2n).
a(n) = A002445(n)*(2n)/A075180(2n-1). (End)

A111008 a(n) = A000367(n)/A141590(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 7, 5, 1, 17, 1, 19, 1, 1, 11, 23, 1, 25, 13, 1, 7, 29, 1, 31, 1, 11, 629, 35, 1, 37, 19, 13, 1, 41, 1, 43, 11, 5, 23, 47, 1, 49, 1, 1003, 481, 53, 1, 5, 7, 19, 29, 59, 1, 61, 2077, 103, 1, 65, 11, 67, 17, 23, 259, 71, 1, 73, 37, 25, 2489, 77
Offset: 0

Views

Author

Paul Curtz, Aug 25 2008

Keywords

Crossrefs

See A141517.
Cf. A300711.

Programs

  • Maple
    A120082 := proc(n) local b; if n = 0 then b := 1 ; elif n = 1 then b := -1/4 ; elif type(n,'odd') then b := 0; else b := bernoulli(n)/(n+1)! ; fi; numer(b) ; end:
    A141590 := proc(n) A120082(2*n) ; end: A000367 := proc(n) numer(bernoulli(2*n)) ; end:
    A111008 := proc(n) A000367(n)/A141590(n) ; end: seq(A111008(n),n=0..120) ; # R. J. Mathar, Sep 03 2009
  • PARI
    upto(N)=bernvec(N);forstep(n=0,2*N,2,print1(gcd(numerator(bernfrac(n)), (n+1)!),", ")) \\ Jeppe Stig Nielsen, Jun 22 2023

Extensions

Edited and extended by R. J. Mathar, Sep 03 2009

A035078 Numerators of partial sums of Bernoulli numbers B_{2n} = A000367/A002445.

Original entry on oeis.org

1, 7, 17, 81, 118, 2771, 4737, 63457, -1270924, 161636091, -464743285, 254905515589, -3006818262414, 299981806371451, -83955854172826681, 38482697321210434701, -1458143803622109300584, 83247435772128371635117
Offset: 0

Views

Author

Keywords

A134825 Floor of the even-indexed Bernoulli numbers B_{2n} = A000367(n)/A002445(n).

Original entry on oeis.org

1, 0, -1, 0, -1, 0, -1, 1, -8, 54, -530, 6192, -86581, 1425517, -27298232, 601580873, -15116315768, 429614643061, -13711655205089, 488332318973593, -19296579341940069, 841693047573682615, -40338071854059455414, 2115074863808199160560, -120866265222965259346028
Offset: 0

Views

Author

Wolfdieter Lang, Nov 13 2007

Keywords

Examples

			n=4: B_8=-1/30=-0,033... hence a(4)=-1.
		

References

  • C. J. Moreno and S. S. Wagstaff, Jr., Sums of Squares of Integers, Chapman & Hall, 2006, p. 107.

Crossrefs

Programs

  • Mathematica
    Floor@BernoulliB[2 Range[0, 20]] (* Vladimir Reshetnikov, Nov 12 2015 *)
  • PARI
    vector(30, n, n--; floor(bernfrac(2*n))) \\ Altug Alkan, Nov 12 2015

Formula

a(n) = floor(B_(2n)), n>=0, with B_{2n} = A000367(n)/A002445(n) = A027641(2n)/A027642(2n).

A176546 Bernoulli numerators A000367 with an additional 1 inserted to represent B_1.

Original entry on oeis.org

1, 1, 1, -1, 1, -1, 5, -691, 7, -3617, 43867, -174611, 854513, -236364091, 8553103, -23749461029, 8615841276005, -7709321041217, 2577687858367, -26315271553053477373, 2929993913841559, -261082718496449122051
Offset: 0

Views

Author

Paul Curtz, Apr 20 2010

Keywords

Comments

Equivalent to adding a 1 in front of A000367, or removing zeros in A164555.
(One could also remove zeros in A027641 which would flip the sign of a(1)).
The denominators are in A006954.

Examples

			B_0=1/1, B_1=1/2 "originally", B_2=1/6, B_4=-1/30, B_6=1/42,...
		

Crossrefs

A180943 Odd composite numbers m for which 12*|A000367((m+1)/2)|==(-1)^{(m-1)/ 2}* A002445((m+1)/2) (mod m).

Original entry on oeis.org

33, 169, 481, 561, 793, 805, 949, 1105, 1261, 1417, 1645, 1729, 2041, 2353, 2465, 2509, 2821, 2977, 3133, 3421, 3445, 3601, 4069, 4123, 4381, 4537, 4849, 5161, 5317, 5473, 5629, 5941, 6061, 6205, 6601, 7033, 7093, 7189, 7501, 7813, 7885, 7969, 8113
Offset: 1

Views

Author

Vladimir Shevelev, Sep 27 2010

Keywords

Comments

These are pseudoprimes in the sense that the congruence of the definition is valid if any odd prime is substituted for m.
Entries of the form m = 4*k+3 are apparently rare: 4123, 8911, ...
Computed to 50 terms by D. S. McNeil, Sep 05 2010.

Crossrefs

Programs

  • Maple
    A000367 := proc(n) numer(bernoulli(2*n)) ; end proc:
    A002445 := proc(n) denom(bernoulli(2*n)) ; end proc:
    isA180943 := proc(m) if type(m,'odd') and not isprime(m) then 12*abs(A000367((m+1)/2)) mod m = (-1)^((m-1)/2)*A002445((m+1)/2) mod m ; else false; end if; end proc:
    A180943 := proc(n) option remember; if n = 1 then 33; else for a from procname(n-1)+2 by 2 do if isA180943(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, Oct 24 2010
  • Mathematica
    nb[n_] := Numerator[BernoulliB[2n]];
    db[n_] := Denominator[BernoulliB[2n]];
    okQ[m_] := CompositeQ[m] && Mod[12*Abs[nb[(m+1)/2]], m] == Mod[(-1)^((m-1)/2)*db[(m+1)/2], m];
    Select[Range[33, 9999, 2], okQ] (* Jean-François Alcover, Feb 28 2024 *)

Extensions

Comments rephrased and program added by R. J. Mathar, Oct 24 2010
Typo in data fixed by Jean-François Alcover, Feb 28 2024

A035077 Denominators of partial sums of Bernoulli numbers B_{2n} = A000367/A002445.

Original entry on oeis.org

1, 6, 15, 70, 105, 2310, 5005, 30030, 255255, 3233230, 969969, 44618574, 37182145, 223092870, 3234846615, 66853496710, 100280245065, 200560490130, 1236789689135, 7420738134810, 30425026352721
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A035078.

Programs

  • Mathematica
    Denominator[Accumulate[BernoulliB[2*Range[0,20]]]] (* Harvey P. Dale, May 24 2015 *)

A081739 a(n) = (-1/2^n)*(A000367(2^n)+1).

Original entry on oeis.org

0, 0, 452, 481832565076, 3336994692120829058949545155598207748188, 4183667308477313795108662587270037418426429056133620947343416969739965511482242658521291610836247844507748569589344
Offset: 1

Views

Author

Benoit Cloitre, Apr 06 2003

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := -(Numerator[BernoulliB[2^(n+1)]] + 1)/2^n; Array[a, 6] (* Amiram Eldar, May 03 2025 *)
  • PARI
    a(n) = -(numerator(bernfrac(1 << (n+1))) + 1) >> n; \\ Amiram Eldar, May 03 2025

Formula

a(n) = A076547(n)-1 (Conjecture). - R. J. Mathar, Apr 22 2007

A308765 Irregular triangle T(n,k) read by rows with 1 <= k <= A091887 even indices 2i such that n-th irregular prime p (A000928) divides the numerator of the Bernoulli numbers B_{2i} (A000367) with 0 <= 2i <= p-3.

Original entry on oeis.org

32, 44, 58, 68, 24, 22, 130, 62, 110, 84, 164, 100, 84, 20, 156, 88, 292, 280, 186, 300, 100, 174, 200, 382, 126, 240, 366, 196, 130, 94, 194, 292, 336, 338, 400, 86, 270, 486, 222, 52, 90, 92, 22, 592, 522, 20, 174, 338, 428, 80, 226, 236, 242, 554, 48, 224, 408, 502, 628, 32, 12, 200, 378, 290, 514, 260, 732, 220, 330, 628, 544, 744, 102, 66, 868, 162, 418, 520, 820, 156, 166
Offset: 1

Views

Author

Martin Renner, Jun 23 2019

Keywords

Comments

First index T(n,1) in row n is A035112(n).

Examples

			Triangle starts with
n = 1 => p = 37 divides the numerator of B_{32} = -7709321041217;
n = 2 => p = 59: B_{44};
n = 3 => p = 67: B_{58};
n = 4 => p = 101: B_{68};
n = 5 => p = 103: B_{24};
n = 6 => p = 131: B_{22};
n = 7 => p = 149: B_{130};
n = 8 => p = 157: B_{62}, B_{110};
n = 9 => p = 233: B_{84};
etc.
		

Crossrefs

Programs

  • Maple
    T:=[]:
    for j from 2 to 168 do
      p:=ithprime(j);
      B:=[]:
      for i from 1 to (p-3)/2 do
        if type(numer(bernoulli(2*i))/p,integer) then B:=[op(B),2*i]: fi:
      od:
      T:=[op(T),op(B)];
    od:
    op(T);
Showing 1-10 of 148 results. Next