A000583 Fourth powers: a(n) = n^4.
0, 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, 14641, 20736, 28561, 38416, 50625, 65536, 83521, 104976, 130321, 160000, 194481, 234256, 279841, 331776, 390625, 456976, 531441, 614656, 707281, 810000, 923521, 1048576, 1185921
Offset: 0
References
- John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 64.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 255; 2nd. ed., p. 269. Worpitzky's identity (6.37).
- Dov Juzuk, Curiosa 56: An interesting observation, Scripta Mathematica 6 (1939), 218.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, Page 47.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Henry Bottomley, Illustration of initial terms
- Henry Bottomley, Some Smarandache-type multiplicative sequences
- Ralph Greenberg, Math for Poets.
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets.
- Sameen Ahmed Khan, Sums of the powers of reciprocals of polygonal numbers, Int'l J. of Appl. Math. (2020) Vol. 33, No. 2, 265-282.
- Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., Vol. 131, No. 1 (2002), pp. 65-75.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Kenneth A. Ross, First Digits of Squares and Cubes, Math. Mag. 85 (2012) 36-42.
- Eric Weisstein's World of Mathematics, Biquadratic Number.
- Index entries for "core" sequences
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
- Index entries for sequences related to Benford's law
Crossrefs
Programs
-
Haskell
a000583 = (^ 4) a000583_list = scanl (+) 0 a005917_list -- Reinhard Zumkeller, Nov 13 2014, Nov 11 2012
-
Magma
[n^4 : n in [0..50]]; // Wesley Ivan Hurt, Sep 05 2014
-
Maple
A000583 := n->n^4: seq(A000583(n), n=0..50); A000583:=-(z+1)*(z**2+10*z+1)/(z-1)**5; # Simon Plouffe in his 1992 dissertation; gives sequence without initial zero with (combinat):seq(fibonacci(3, n^2)-1, n=0..33); # Zerinvary Lajos, May 25 2008
-
Mathematica
Range[0,100]^4 (* Vladimir Joseph Stephan Orlovsky, Mar 14 2011 *)
-
Maxima
makelist(n^4,n,0,30); /* Martin Ettl, Nov 12 2012 */
-
PARI
A000583(n) = n^4 \\ Michael B. Porter, Nov 09 2009
-
Python
def a(n): return n**4 print([a(n) for n in range(34)]) # Michael S. Branicky, Nov 10 2022
Formula
Multiplicative with a(p^e) = p^(4e). - David W. Wilson, Aug 01 2001
G.f.: x*(1 + 11*x + 11*x^2 + x^3)/(1 - x)^5. More generally, g.f. for n^m is Euler(m, x)/(1-x)^(m+1), where Euler(m, x) is Eulerian polynomial of degree m (cf. A008292).
Dirichlet generating function: zeta(s-4). - Franklin T. Adams-Watters, Sep 11 2005
E.g.f.: (x + 7*x^2 + 6*x^3 + x^4)*e^x. More generally, the general form for the e.g.f. for n^m is phi_m(x)*e^x, where phi_m is the exponential polynomial of order n. - Franklin T. Adams-Watters, Sep 11 2005
Sum_{k>0} 1/a(k) = Pi^4/90 = A013662. - Jaume Oliver Lafont, Sep 20 2009
a(n) = C(n+3,4) + 11*C(n+2,4) + 11*C(n+1,4) + C(n,4). [Worpitzky's identity for powers of 4. See, e.g., Graham et al., eq. (6.37). - Wolfdieter Lang, Jul 17 2019]
a(n) = n*A177342(n) - Sum_{i=1..n-1} A177342(i) - (n - 1), with n > 1. - Bruno Berselli, May 07 2010
a(n) + a(n+1) + 1 = 2*A002061(n+1)^2. - Charlie Marion, Jun 13 2013
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + 24. - Ant King, Sep 23 2013
From Amiram Eldar, Jan 20 2021: (Start)
Sum_{n>=1} (-1)^(n+1)/a(n) = 7*Pi^4/720 (A267315).
Product_{n>=2} (1 - 1/a(n)) = sinh(Pi)/(4*Pi). (End)
Comments