1, 1, 1, 1, 2, 2, 5, 6, 13, 20, 41, 70, 144, 266, 545, 1072, 2210, 4491, 9388, 19529, 41286, 87361, 186657, 399927, 862584, 1866461, 4058367, 8852686, 19384258, 42570435, 93783472, 207157172, 458805044, 1018564642, 2266475432, 5053991582, 11292781891, 25280844844
Offset: 0
Non-isomorphic representatives of the a(6) = 5 hypertrees are the following:
{{1,2,3,4,5,6}}
{{1,2},{1,3,4,5}}
{{1,2,3},{1,4,5}}
{{1,2},{1,3},{1,4}}
{{1,2},{1,3},{2,4}}
Non-isomorphic representatives of the a(7) = 6 hypertrees are the following:
{{1,2,3,4,5,6,7}}
{{1,2},{1,3,4,5,6}}
{{1,2,3},{1,4,5,6}}
{{1,2},{1,3},{1,4,5}}
{{1,2},{1,3},{2,4,5}}
{{1,3},{2,4},{1,2,5}}
From _Kevin Ryde_, Feb 25 2020: (Start)
a(6) = 5 hypertrees of weight 6 and their corresponding free trees of 6 edges (7 vertices). Each * is an "odd" vertex (odd distance to a leaf). Each hyperedge is the set of "even" vertices surrounding an odd.
{1,2,3,4,5,6} 3 2
\ /
4-*-1 (star 7)
/ \
5 6
.
{1,2},{1,3,4,5} /-3
2--*--1--*--4
\-5
.
{1,2,3},{1,4,5} 2-\ /-4
*--1--*
3-/ \-5
.
{1,2},{1,3},{1,4} /-*--2
1--*--3
\-*--4
.
{1,2},{2,4},{1,3} 3--*--1--*--2--*--4 (path 7)
(End)
Comments