A215512
a(n) = 5*a(n-1) - 6*a(n-2) + a(n-3), with a(0)=1, a(1)=3, a(2)=8.
Original entry on oeis.org
1, 3, 8, 23, 70, 220, 703, 2265, 7327, 23748, 77043, 250054, 811760, 2635519, 8557089, 27784091, 90213440, 292919743, 951102166, 3088205812, 10027335807, 32558546329, 105716922615, 343260670908, 1114560365179, 3618954723062, 11750672095144, 38154192502527
Offset: 0
We have a(6) = 10*a(4)+a(1), a(5) = 11*(a(3)-a(1)), a(10)-a(4)+a(3)+a(1)+a(0) = 77*10^3, and a(11)-a(4)+a(3)-a(2)+a(0) = 25*10^4 = (5^6)*(2^4).
Cf.
A215694,
A215695,
A215007,
A215008,
A215143,
A215493,
A215494,
A215510,
A215575,
A215455,
A214683,
A214699.
-
I:=[1,3,8]; [n le 3 select I[n] else 5*Self(n-1) - 6*Self(n-2) + Self(n-3): n in [1..30]]; // G. C. Greubel, Apr 23 2018
-
LinearRecurrence[{5,-6,1}, {1,3,8}, 50]
-
x='x+O('x^30); Vec((1-2*x-x^2)/(1-5*x+6*x^2-x^3)) \\ G. C. Greubel, Apr 23 2018
A071721
Expansion of (1+x^2*C^2)*C^2, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
Original entry on oeis.org
1, 2, 6, 18, 56, 180, 594, 2002, 6864, 23868, 83980, 298452, 1069776, 3863080, 14040810, 51325650, 188574240, 695987820, 2579248980, 9593714460, 35804293200, 134032593240, 503154100020, 1893689067348, 7144084508256
Offset: 0
G.f. = 1 + 2*x + 6*x^2 + 18*x^3 + 56*x^4 + 180*x^5 + 594*x^6 + 2002*x^7 + ... - _Michael Somos_, Apr 22 2022
- Michael De Vlieger, Table of n, a(n) for n = 0..1000
- Colin Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
- Stoyan Dimitrov, On permutation patterns with constrained gap sizes, arXiv:2002.12322 [math.CO], 2020.
- Ling Gao, Graph assembly for spider and tadpole graphs, Master's Thesis, Cal. State Poly. Univ. (2023). See p. 32.
- Boram Park and Seonjeong Park, Shellable posets arising from even subgraphs of a graph, arXiv preprint arXiv:1705.06423 [math.CO], 2017.
- Seonjeong Park, Real toric manifolds and shellable posets arising from graphs, 2018.
-
a := n -> `if`(n=0, 1, 6*binomial(2*n, n-1)/(n+2));
seq(a(n), n=0..24); # Peter Luschny, Jun 28 2018
-
Join[{1},Table[6n CatalanNumber[n]/(n+2),{n,30}]] (* Harvey P. Dale, Jun 05 2012 *)
nn=20;t=(1-(1-4x)^(1/2))/(2x);CoefficientList[Series[D[1+x (y t -y+1)^2,y]/.y->1,{x,0,nn}],x] (* Geoffrey Critzer, Sep 16 2013 *)
-
{a(n) = if(n<1, n==0, 6*n*(2*n)!/(n!*(n + 1)!*(n + 2)))}; /* Michael Somos, Apr 22 2022 */
-
a = lambda n: n*(n+1)*hypergeometric([1-n, 2-n], [4], 1) if n>0 else 1
[simplify(a(n)) for n in range(25)] # Peter Luschny, Nov 19 2014
A071722
Expansion of (1+x^2*C^2)*C^3, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
Original entry on oeis.org
1, 3, 10, 33, 110, 372, 1276, 4433, 15574, 55250, 197676, 712538, 2585292, 9434830, 34610400, 127553745, 472055910, 1753616370, 6536826780, 24443315550, 91664179620, 344655239760, 1299052403688, 4907335827258, 18576824685820
Offset: 0
-
a := n -> (17*n^2 + 13*n + 6)*binomial(2*n, n)/((n + 1)*(n + 2)*(n + 3)): seq(a(n), n = 0..24); # Peter Luschny, Dec 01 2024
-
a(n):=(3*binomial(2*n+2,n)+5*binomial(2*n,n+2))/(n+3); makelist(a(n),n,0,50);
/* Tani Akinari, Dec 01 2024 */
A071723
Expansion of (1+x^2*C^2)*C^4, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
Original entry on oeis.org
1, 4, 15, 54, 192, 682, 2431, 8710, 31382, 113696, 414086, 1515516, 5571750, 20569590, 76228095, 283481670, 1057628550, 3957577800, 14849601090, 55859886420, 210622646520, 795898303668, 3013646759910, 11432740177564, 43448822603452, 165396657221152
Offset: 0
-
a := n -> (2*(2*n + 1)*(11*n^2 + 17*n + 12)*binomial(2*n, n))/((n + 1)*(n + 2)*(n + 3)*(n + 4)): seq(a(n), n = 0..25); # Peter Luschny, Dec 01 2024
-
a(n):=sum((k+1)*(k^2+k+1)*binomial(2*n-k,n),k,0,n)/(n+1); /* Vladimir Kruchinin, Sep 28 2011 */
-
a(n):=(4*binomial(2*n+3,n)+6*binomial(2*n+1,n+3))/(n+4); /* Tani Akinari, Dec 01 2024 */
A000781
a(n) = 3*Catalan(n) - Catalan(n-1) - 1.
Original entry on oeis.org
1, 4, 12, 36, 111, 353, 1154, 3860, 13155, 45525, 159561, 565249, 2020687, 7280419, 26410094, 96378164, 353576699, 1303271309, 4824150869, 17925098069, 66834680639, 249981423899, 937696277309, 3526652828321, 13295935057031, 50240112815003
Offset: 1
-
3#[[2]]-#[[1]]-1&/@Partition[CatalanNumber[Range[0,30]],2,1] (* Harvey P. Dale, Apr 28 2013 *)
A061557
a(n) = (7*n+2)*C(n)/(n+2), where C(n) is the n-th Catalan number.
Original entry on oeis.org
3, 8, 23, 70, 222, 726, 2431, 8294, 28730, 100776, 357238, 1277788, 4605980, 16715250, 61020495, 223931910, 825632610, 3056887680, 11360977650, 42368413620, 158498860260, 594636663660, 2236748680998, 8433988655580
Offset: 1
Darko Marinov (marinov(AT)lcs.mit.edu), May 17 2001
A071735
Expansion of (1+x^3*C^3)*C^2, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
Original entry on oeis.org
1, 2, 5, 15, 47, 152, 504, 1705, 5863, 20436, 72046, 256462, 920550, 3328192, 12109270, 44305245, 162911415, 601700700, 2231255070, 8304089970, 31007435970, 116130446640, 436137803400, 1642112017338, 6197239974582, 23438771087272, 88826989017004, 337262603824860
Offset: 0
-
a(n):=if n=0 then 1 else (2*binomial(2*n+1,n)+5*binomial(2*n-2,n+1))/(n+2); makelist(a(n),n,0,20); /* Tani Akinari, Jul 24 2025 */
A352700
G.f.: Sum_{n>=0} binomial((n+1)*(2*n+1),n)/(2*n+1) * x^n / C(x)^(n*(2*n+1)+1), where C(x) = 1 + x*C(x)^2 is the Catalan function (A000108).
Original entry on oeis.org
1, 1, 12, 239, 7178, 296092, 15666162, 1014796995, 77899495174, 6919858148750, 698584345392968, 79022119891573410, 9902447587480555624, 1361894352334815968554, 203969111022547680433454, 33047362680815865252524643, 5759708920548423261284008230
Offset: 0
G.f.: A(x) = 1 + x + 12*x^2 + 239*x^3 + 7178*x^4 + 296092*x^5 + 15666162*x^6 + 1014796995*x^7 + 77899495174*x^8 + 6919858148750*x^9 + ...
where
A(x) = 1/C(x) + 2*x/C(x)^4 + 21*x^2/C(x)^11 + 468*x^3/C(x)^22 + 16555*x^4/C(x)^37 + 812448*x^5/C(x)^56 + 51274146*x^6/C(x)^79 + 3965837928*x^7/C(x)^106 + ... + (n+1)*A299429(n)*x^n/C(x)^(n*(2*n+1)+1) + ...
and
C(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 42*x^5 + 132*x^6 + 429*x^7 + 1430*x^8 + 4862*x^9 + ... + A000108(n)*x^n + ...
Congruence modulo 3.
(1) It appears that A(x)^3 is congruent to A(x^3) modulo 3, where
A(x)^3 = 1 + 3*x + 39*x^2 + 790*x^3 + 23436*x^4 + 949701*x^5 + 49503687*x^6 + 3171679536*x^7 + 241578165750*x^8 + 21340270771814*x^9 + ...
and
(A(x)^3 - A(x^3))/3 = x + 13*x^2 + 263*x^3 + 7812*x^4 + 316567*x^5 + 16501225*x^6 + 1057226512*x^7 + 80526055250*x^8 + 7113423590525*x^9 + ...
(2) Also, g.f. A(x) seems to be congruent to C(x) + x^2*C(x)^3, where
C(x) + x^2*C(x)^3 = 1 + x + 3*x^2 + 8*x^3 + 23*x^4 + 70*x^5 + 222*x^6 + 726*x^7 + 2431*x^8 + 8294*x^9 + ... + (C(2*n,n)/(n+1) + C(2*n-1,n-2)*3/(2*n-1))*x^n + ...
-
{a(n) = my(C = (1 - sqrt(1-4*x +O(x^(n+3))))/(2*x),
A = sum(m=0,n, binomial((m+1)*(2*m+1),m)/(2*m+1) * x^m/C^(m*(2*m+1)+1))); polcoeff(A,n)}
for(n=0,20,print1(a(n),", "))
Showing 1-8 of 8 results.
Comments