A001248 Squares of primes.
4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481
Offset: 1
Links
- Ray Chandler, Table of n, a(n) for n = 1..10000 (first 5000 terms from N. J. A. Sloane)
- Nicholas John Bizzell-Browning, LIE scales: Composing with scales of linear intervallic expansion, Ph. D. Thesis, Brunel Univ. (UK, 2024). See p. 143.
- R. P. Boas and N. J. A. Sloane, Correspondence, 1974
- Marius Coman, On the special relation between the numbers of the form 505+ 1008k and the squares of primes, 2015.
- Brady Haran and Matt Parker, Squaring Primes, Numberphile video (2018).
- Eric Weisstein's World of Mathematics, Prime Power.
- OEIS Wiki, Index entries for number of divisors
- Index to sequences related to prime signature
Crossrefs
Cf. A258599.
Programs
-
Haskell
a001248 n = a001248_list !! (n-1) a001248_list = map (^ 2) a000040_list -- Reinhard Zumkeller, Sep 23 2011
-
Magma
[p^2: p in PrimesUpTo(300)]; // Vincenzo Librandi, Mar 27 2014
-
Maple
A001248:=n->ithprime(n)^2; seq(A001248(k), k=1..50); # Wesley Ivan Hurt, Oct 11 2013
-
Mathematica
Prime[Range[30]]^2 (* Zak Seidov, Dec 07 2011 *) Select[Range[40000], DivisorSigma[0, #] == 3 &] (* Carlos Eduardo Olivieri, Jun 01 2015 *)
-
PARI
forprime(p=2,1e3,print1(p^2", ")) \\ Charles R Greathouse IV, Jun 10 2011
-
PARI
A001248(n)=prime(n)^2 \\ M. F. Hasler, Sep 16 2012
-
Python
from sympy import prime def A001248(n): return prime(n)**2 # Chai Wah Wu, Aug 09 2024
-
SageMath
[n^2 for n in prime_range(1,301)] # G. C. Greubel, May 02 2024
Formula
n such that A062799(n) = 2. - Benoit Cloitre, Apr 06 2002
a(n) = A000040(n)^(3-1)=A000040(n)^2, where 3 is the number of divisors of a(n). - Omar E. Pol, May 06 2008
A033273(a(n)) = 3. - Juri-Stepan Gerasimov, Dec 07 2009
For n > 2: (a(n) + 17) mod 12 = 6. - Reinhard Zumkeller, May 12 2010
For n > 2: a(n) = 1 (mod 24). - Zak Seidov, Dec 07 2011
A211110(a(n)) = 2. - Reinhard Zumkeller, Apr 02 2012
a(n) = A087112(n,n). - Reinhard Zumkeller, Nov 25 2012
a(n) = prime(n)^2. - Jon E. Schoenfield, Mar 29 2015
Product_{n>=1} a(n)/(a(n)-1) = Pi^2/6. - Daniel Suteu, Feb 06 2017
Sum_{n>=1} 1/a(n) = P(2) = 0.4522474200... (A085548). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)/zeta(4) = 15/Pi^2 (A082020).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(2) = 6/Pi^2 (A059956). (End)
Comments