cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A306017 Number of non-isomorphic multiset partitions of weight n in which all parts have the same size.

Original entry on oeis.org

1, 1, 4, 6, 17, 14, 66, 30, 189, 222, 550, 112, 4696, 202, 5612, 30914, 63219, 594, 453125, 980, 3602695, 5914580, 1169348, 2510, 299083307, 232988061, 23248212, 2669116433, 14829762423, 9130, 170677509317, 13684, 1724710753084, 2199418340875, 14184712185, 38316098104262
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2018

Keywords

Comments

A multiset partition of weight n is a finite multiset of finite nonempty multisets whose sizes sum to n.
Number of distinct nonnegative integer matrices with all row sums equal and total sum n up to row and column permutations. - Andrew Howroyd, Sep 05 2018
From Gus Wiseman, Oct 11 2018: (Start)
Also the number of non-isomorphic multiset partitions of weight n in which each vertex appears the same number of times. For n = 4, non-isomorphic representatives of these 17 multiset partitions are:
{{1,1,1,1}}
{{1,1,2,2}}
{{1,2,3,4}}
{{1},{1,1,1}}
{{1},{1,2,2}}
{{1},{2,3,4}}
{{1,1},{1,1}}
{{1,1},{2,2}}
{{1,2},{1,2}}
{{1,2},{3,4}}
{{1},{1},{1,1}}
{{1},{1},{2,2}}
{{1},{2},{1,2}}
{{1},{2},{3,4}}
{{1},{1},{1},{1}}
{{1},{1},{2},{2}}
{{1},{2},{3},{4}}
(End)

Examples

			Non-isomorphic representatives of the a(4) = 17 multiset partitions:
  {{1,1,1,1}}
  {{1,1,2,2}}
  {{1,2,2,2}}
  {{1,2,3,3}}
  {{1,2,3,4}}
  {{1,1},{1,1}}
  {{1,1},{2,2}}
  {{1,2},{1,2}}
  {{1,2},{2,2}}
  {{1,2},{3,3}}
  {{1,2},{3,4}}
  {{1,3},{2,3}}
  {{1},{1},{1},{1}}
  {{1},{1},{2},{2}}
  {{1},{2},{2},{2}}
  {{1},{2},{3},{3}}
  {{1},{2},{3},{4}}
		

Crossrefs

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    K[q_List, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
    RowSumMats[n_, m_, k_] := Module[{s = 0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[K[q, t, k]/t*x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
    a[n_] := a[n] = If[n==0, 1, If[PrimeQ[n], 2 PartitionsP[n], Sum[ RowSumMats[ n/d, n, d], {d, Divisors[n]}]]];
    Table[Print[n, " ", a[n]]; a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 07 2019, after Andrew Howroyd *)
  • PARI
    \\ See A318951 for RowSumMats.
    a(n)={sumdiv(n,d,RowSumMats(n/d,n,d))} \\ Andrew Howroyd, Sep 05 2018

Formula

For p prime, a(p) = 2*A000041(p).
a(n) = Sum_{d|n} A331485(n/d, d). - Andrew Howroyd, Feb 09 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 05 2018

A305551 Number of partitions of partitions of n where all partitions have the same sum.

Original entry on oeis.org

1, 1, 3, 4, 9, 8, 22, 16, 43, 41, 77, 57, 201, 102, 264, 282, 564, 298, 1175, 491, 1878, 1509, 2611, 1256, 7872, 2421, 7602, 8026, 16304, 4566, 38434, 6843, 48308, 41078, 56582, 28228, 221115, 21638, 146331, 208142, 453017, 44584, 844773, 63262, 1034193, 1296708
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2018

Keywords

Examples

			The a(4) = 9 partitions of partitions where all partitions have the same sum:
(4), (31), (22), (211), (1111),
(2)(2), (2)(11), (11)(11),
(1)(1)(1)(1).
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[PartitionsP[n/k]+k-1,k],{k,Divisors[n]}],{n,60}]
  • PARI
    a(n)={if(n<1, n==0, sumdiv(n, d, binomial(numbpart(n/d) + d - 1, d)))} \\ Andrew Howroyd, Jun 22 2018

Formula

a(n) = Sum_{d|n} binomial(A000041(n/d) + d - 1, d).

A306021 Number of set-systems spanning {1,...,n} in which all sets have the same size.

Original entry on oeis.org

1, 1, 2, 6, 54, 1754, 1102746, 68715913086, 1180735735356265746734, 170141183460507906731293351306656207090, 7237005577335553223087828975127304177495735363998991435497132232365910414322
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2018

Keywords

Comments

a(n) is the number of labeled uniform hypergraphs spanning n vertices. - Andrew Howroyd, Jan 16 2024

Examples

			The a(3) = 6 set-systems in which all sets have the same size:
  {{1,2,3}}
  {{1}, {2}, {3}}
  {{1,2}, {1,3}}
  {{1,2}, {2,3}}
  {{1,3}, {2,3}}
  {{1,2}, {1,3}, {2,3}}
		

Crossrefs

Row sums of A299471.
The unlabeled version is A301481.
The connected version is A299353.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-k)*Binomial[n,k]*(1+Sum[2^Binomial[k,d]-1,{d,k}]),{k,0,n}],{n,12}]
  • PARI
    a(n) = if(n==0, 1, sum(k=0, n, sum(d=0, n, (-1)^(n-d)*binomial(n,d)*2^binomial(d,k)))) \\ Andrew Howroyd, Jan 16 2024

Formula

a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*(1 - k + Sum_{d = 1..k} 2^binomial(k, d)).
Inverse binomial transform of A306020. - Andrew Howroyd, Jan 16 2024

A299471 Regular triangle where T(n,k) is the number of labeled k-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 41, 11, 1, 1, 768, 958, 26, 1, 1, 27449, 1042642, 32596, 57, 1, 1, 1887284, 34352419335, 34359509614, 2096731, 120, 1, 1, 252522481, 72057319189324805, 1180591620442534312297, 72057594021152435, 268434467, 247, 1, 1, 66376424160
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2018

Keywords

Examples

			Triangle begins:
  1;
  1,     1;
  1,     4,       1;
  1,    41,      11,     1;
  1,   768,     958,    26,  1;
  1, 27449, 1042642, 32596, 57, 1;
  ...
		

Crossrefs

Columns 1..4 are A000012, A006129, A302374, A302396.
Row sums are A306021.
The unlabeled version is A301922.
The connected version is A299354.

Programs

  • Mathematica
    Table[Sum[(-1)^(n-d)*Binomial[n,d]*2^Binomial[d,k],{d,0,n}],{n,10},{k,n}]
  • PARI
    T(n, k) = sum(d = 0, n, (-1)^(n-d)*binomial(n,d)*2^binomial(d,k)) \\ Andrew Howroyd, Jan 16 2024

Formula

T(n, k) = Sum_{d = 0..n} (-1)^(n-d)*binomial(n,d)*2^binomial(d,k).

A299353 Number of labeled connected uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 1, 1, 5, 50, 1713, 1101990, 68715891672, 1180735735356264714926, 170141183460507906731293351306487161569, 7237005577335553223087828975127304177495735363998991435497132228228565768846
Offset: 0

Views

Author

Gus Wiseman, Jun 18 2018

Keywords

Comments

A hypergraph is uniform if all edges have the same size.
Let T be the regular triangle A299354, where column k is the logarithmic transform of the inverse binomial transform of c(d) = 2^binomial(d,k). Then a(n) is the sum of row n.

Examples

			The a(3) = 5 hypergraphs:
{{1,2,3}}
{{1,2},{1,3}}
{{1,2},{2,3}}
{{1,3},{2,3}}
{{1,2},{1,3},{2,3}}
		

Crossrefs

Programs

  • Mathematica
    nn=10;Table[Sum[SeriesCoefficient[Log[Sum[x^m/m!*(-1)^(m-d)*Binomial[m,d]*2^Binomial[d,k],{m,0,n},{d,0,m}]],{x,0,n}]*n!,{k,n}],{n,nn}]

A306019 Number of non-isomorphic set-systems of weight n in which all parts have the same size.

Original entry on oeis.org

1, 1, 2, 2, 4, 2, 10, 2, 17, 14, 33, 2, 167, 2, 186, 491, 785, 2, 5839, 2, 11123, 53454, 15229, 2, 1102924, 53537, 193382, 16334183, 12411062, 2, 382413555, 2, 993814248, 9763321547, 53394774, 1778595972, 402119882757, 2, 1111261718, 9674133468473, 16955983996383
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2018

Keywords

Comments

A set-system of weight n is a finite set of finite nonempty sets whose sizes sum to n.

Examples

			Non-isomorphic representatives of the a(6) = 10 set-systems:
{{1,2,3,4,5,6}}
{{1,2,3},{4,5,6}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1,2},{1,3},{2,3}}
{{1,2},{3,4},{5,6}}
{{1,2},{3,5},{4,5}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1},{2},{3},{4},{5},{6}}
		

Crossrefs

Programs

  • PARI
    \\ See A331508 for T(n,k).
    a(n) = {if(n==0, 1, sumdiv(n, d, if(d==1 || d==n, 1, T(n/d, d))))} \\ Andrew Howroyd, Jan 16 2024

Formula

a(p) = 2 for prime p. - Andrew Howroyd, Aug 29 2019
a(n) = Sum_{d|n} A331508(n/d, d) for n > 0. - Andrew Howroyd, Jan 16 2024

Extensions

Terms a(12) and beyond from Andrew Howroyd, Sep 01 2019

A306018 Number of non-isomorphic set multipartitions of weight n in which all parts have the same size.

Original entry on oeis.org

1, 1, 3, 4, 9, 8, 24, 16, 51, 47, 115, 57, 420, 102, 830, 879, 2962, 298, 15527, 491, 41275, 80481, 133292, 1256, 2038182, 58671, 2386862, 24061887, 23570088, 4566, 600731285, 6843, 1303320380, 14138926716, 1182784693, 1820343112, 542834549721, 21638, 31525806080
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2018

Keywords

Comments

A set multipartition of weight n is a finite multiset of finite nonempty sets whose cardinalities sum to n.
Number of distinct binary matrices with all row sums equal and total sum n, up to row and column permutations. - Andrew Howroyd, Sep 05 2018

Examples

			Non-isomorphic representatives of the a(6) = 24 set multipartitions in which all parts have the same size:
{{1,2,3,4,5,6}}
{{1,2,3},{1,2,3}}
{{1,2,3},{4,5,6}}
{{1,2,5},{3,4,5}}
{{1,3,4},{2,3,4}}
{{1,2},{1,2},{1,2}}
{{1,2},{1,3},{2,3}}
{{1,2},{3,4},{3,4}}
{{1,2},{3,4},{5,6}}
{{1,2},{3,5},{4,5}}
{{1,3},{2,3},{2,3}}
{{1,3},{2,4},{3,4}}
{{1,4},{2,4},{3,4}}
{{1},{1},{1},{1},{1},{1}}
{{1},{1},{1},{2},{2},{2}}
{{1},{1},{2},{2},{2},{2}}
{{1},{1},{2},{2},{3},{3}}
{{1},{2},{2},{2},{2},{2}}
{{1},{2},{2},{3},{3},{3}}
{{1},{2},{3},{3},{3},{3}}
{{1},{2},{3},{3},{4},{4}}
{{1},{2},{3},{4},{4},{4}}
{{1},{2},{3},{4},{5},{5}}
{{1},{2},{3},{4},{5},{6}}
		

Crossrefs

Programs

Formula

a(p) = A000041(p) + 1 for prime p. - Andrew Howroyd, Sep 06 2018
a(n) = Sum_{d|n} A331461(n/d, d). - Andrew Howroyd, Feb 09 2020

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 05 2018

A306020 a(n) is the number of set-systems using nonempty subsets of {1,...,n} in which all sets have the same size.

Original entry on oeis.org

1, 2, 5, 16, 95, 2110, 1114237, 68723671292, 1180735735906024030715, 170141183460507917357914971986913657850, 7237005577335553223087828975127304179197147198604070555943173844710572689401
Offset: 0

Views

Author

Gus Wiseman, Jun 17 2018

Keywords

Comments

A058673(n) <= a(n). - Lorenzo Sauras Altuzarra, Aug 10 2023

Examples

			a(3) = 16 set-systems in which all sets have the same size:
  {}
  {{1}}
  {{2}}
  {{3}}
  {{1,2}}
  {{1,3}}
  {{2,3}}
  {{1,2,3}}
  {{1},{2}}
  {{1},{3}}
  {{2},{3}}
  {{1,2},{1,3}}
  {{1,2},{2,3}}
  {{1,3},{2,3}}
  {{1},{2},{3}}
  {{1,2},{1,3},{2,3}}
		

Crossrefs

Programs

  • Maple
    a := n -> 1-n+add(2^binomial(n, d), d = 1 .. n):
    seq(a(n), n = 0 .. 10); # Lorenzo Sauras Altuzarra, Aug 11 2023
  • Mathematica
    Table[1+Sum[2^Binomial[n,d]-1,{d,n}],{n,10}]
  • PARI
    a(n) = 1 - n + sum(d = 1, n, 2^binomial(n, d)); \\ Michel Marcus, Aug 10 2023

Formula

a(n) = 1 - n + Sum_{d = 1..n} 2^binomial(n, d).

A299354 Regular triangle where T(n,k) is the number of labeled connected k-uniform hypergraphs spanning n vertices.

Original entry on oeis.org

1, 0, 1, 0, 4, 1, 0, 38, 11, 1, 0, 728, 958, 26, 1, 0, 26704, 1042632, 32596, 57, 1, 0, 1866256, 34352418950, 34359509614, 2096731, 120, 1, 0, 251548592, 72057319189266922, 1180591620442534312262, 72057594021152435, 268434467, 247, 1, 0, 66296291072
Offset: 1

Views

Author

Gus Wiseman, Jun 18 2018

Keywords

Examples

			Triangle begins:
1
0, 1
0, 4, 1
0, 38, 11, 1
0, 728, 958, 26, 1
0, 26704, 1042632, 32596, 57, 1
		

Crossrefs

Programs

  • Mathematica
    nn=10;Table[SeriesCoefficient[Log[Sum[x^n/n!*Sum[(-1)^(n-d)*Binomial[n,d]*2^Binomial[d,k],{d,0,n}],{n,0,nn}]],{x,0,n}]*n!,{n,nn},{k,n}]

Formula

Column k is the logarithmic transform of the inverse binomial transform of c(d) = 2^binomial(d,k).

A305552 Number of uniform normal multiset partitions of weight n.

Original entry on oeis.org

1, 1, 3, 5, 12, 17, 47, 65, 170, 277, 655, 1025, 2739, 4097, 10281, 17257, 41364, 65537, 170047, 262145, 660296, 1094457, 2621965, 4194305, 10898799, 16792721, 41945103, 69938141, 168546184, 268435457, 694029255, 1073741825, 2696094037, 4474449261, 10737451027
Offset: 0

Views

Author

Gus Wiseman, Jun 20 2018

Keywords

Comments

A multiset is normal if it spans an initial interval of positive integers. A multiset partition m is uniform if all parts have the same size, and normal if all parts are normal. The weight of m is the sum of sizes of its parts.

Examples

			The a(4) = 12 uniform normal multiset partitions:
{1111}, {1222}, {1122}, {1112}, {1233}, {1223}, {1123}, {1234},
{11,11}, {11,12}, {12,12},
{1,1,1,1}.
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[2^(n/k-1)+k-1,k],{k,Divisors[n]}],{n,35}]
  • PARI
    a(n)={if(n<1, n==0, sumdiv(n, d, binomial(2^(n/d - 1) + d - 1, d)))} \\ Andrew Howroyd, Jun 22 2018

Formula

a(n) = Sum_{d|n} binomial(2^(n/d - 1) + d - 1, d).
Showing 1-10 of 13 results. Next