cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001350 Associated Mersenne numbers.

Original entry on oeis.org

0, 1, 1, 4, 5, 11, 16, 29, 45, 76, 121, 199, 320, 521, 841, 1364, 2205, 3571, 5776, 9349, 15125, 24476, 39601, 64079, 103680, 167761, 271441, 439204, 710645, 1149851, 1860496, 3010349, 4870845, 7881196, 12752041, 20633239, 33385280, 54018521, 87403801, 141422324
Offset: 0

Views

Author

Keywords

Comments

a(n) is last term in the period of the continued fraction expansion of phi^n (phi being the golden number). E.g.: n=10, phi^10=[122,1,121,1,121,1,121,...] (and the period may only have 1 or 2 terms). Also, a(n) = floor(phi^n)-((n+1) mod 2), or a(n) = A014217(n)-((n+1) mod 2). - Thomas Baruchel, Nov 05 2002 [continued fraction value corrected by Jon E. Schoenfield, Jan 20 2019]
a(n) is the resultant of the polynomials x^2-x-1 and x^(n+1)-x^n-1 for n >= 1. - Richard Choulet, Aug 05 2007
This is a divisibility sequence; that is, if n divides m, then a(n) divides a(m). - Michael Somos, Feb 12 2012
Gives the number of arrangements of black and white beads on a necklace with a total of n beads satisfying (1) there is at least one black bead (2) between any two black beads the number of white beads is even and (3) rotations and flippings of a necklace are considered distinct (see Butler). - Peter Bala, Mar 06 2014
This is the case P1 = 1, P2 = 0, Q = -1 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 31 2014
The resultant of the (s_2, s_2+n) pair, where s_n(X) is X^n-X-1, is -a(n). See Rush link. - Michel Marcus, Sep 30 2019

Examples

			G.f. = x + x^2 + 4*x^3 + 5*x^4 + 11*x^5 + 16*x^6 + 29*x^7 + 45*x^8 + 76*x^9 + ...
n=1: a(9)/a(3) = 76/4 = 19; a(18)/a(6) = 5776/16 = 361 = 19^2. - _Bob Selcoe_, Jun 01 2014
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Floor(-(1 - ((1 + Sqrt(5))/2)^n - (-(1 + Sqrt(5))/2)^(-n) + (-1)^n)): n in [0..40]]; // Vincenzo Librandi, Aug 15 2011
    
  • Maple
    A001350 := n -> add(binomial(k-1, 2*k-n)*n/(n-k), k=0..n-1);
    seq(A001350(n), n=0..39); # Peter Luschny, Sep 26 2014
  • Mathematica
    Clear[f, n]; f[n_] = -(1 - ((1 + Sqrt[5])/2)^n - (-(1 + Sqrt[5])/2)^(-n) + (-1)^n); Table[FullSimplify[ExpandAll[f[n]]], {n, 0, 30}] (* Roger L. Bagula and Gary W. Adamson, Nov 26 2008 *)
    a[ n_] := LucasL[n] - 1 - (-1)^n; (* Michael Somos, May 18 2015 *)
    a[ n_] := SeriesCoefficient[ x D[ Log[ 1 + x / (1 - x - x^2)], x], {x, 0, n}]; (* Michael Somos, May 18 2015 *)
    LinearRecurrence[{1, 2, -1, -1}, {0, 1, 1, 4}, 40] (* Jean-François Alcover, Jan 07 2019 *)
  • PARI
    {a(n) = fibonacci(n+1) + fibonacci(n-1) - 1 - (-1)^n};
    
  • PARI
    {a(n) = my(w = quadgen(5)); simplify( -(w^n - 1) * ((-1/w)^n - 1))}; /* Michael Somos, Feb 12 2012 */
    
  • Python
    from sympy import lucas
    def A001350(n): return lucas(n)-((n&1^1)<<1) # Chai Wah Wu, Sep 23 2023

Formula

G.f.: x*(1+x^2)/((1-x^2)*(1-x-x^2)). - Simon Plouffe in his 1992 dissertation
a(n) = a(n-1) + a(n-2) + 1 -(-1)^n. a(-n) = (-1)^n * a(n).
a(n) = A050140(Fibonacci(n)). - Thomas Baruchel, Nov 05 2002
Convolution of F(n) and {1, 0, 2, 0, 2, ...}. a(n) = Sum_{k=0..n} ((1+(-1)^k)-0^k)*F(n-k) = Sum_{k=0..n} F(k)*((1+(-1)^(n-k))-0^(n-k)). - Paul Barry, Jul 19 2004
a(n) = 2*A074331(n) - A000045(n). - Paul Barry, Jul 19 2004
a(n) = Lucas_number(n) - 1 - (-1)^n = A000032(n) - 1 - (-1)^n. - Hieronymus Fischer, Feb 18 2006
a(n) = -(1 - ((1 + sqrt(5))/2)^n - (-(1 + sqrt(5))/2)^(-n) + (-1)^n). - Roger L. Bagula and Gary W. Adamson, Nov 26 2008
a(n) = n * Sum_{k=1..n} (Sum_{i=ceiling((n-k)/2)..(n-k)} (binomial(i,n-k-i)*binomial(k+i-1,k-1))/k*(-1)^(k+1)), n>0. - Vladimir Kruchinin, Sep 03 2010
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4). - Colin Barker, Apr 11 2014
a(n) = sqrt(A152152(n)). - Colin Barker, Apr 11 2014
a(n) = a(2*n)/A000032(n) when n is odd; a(n) = a(2*n)/(A000032(n+2)) when n is even. - Bob Selcoe, Jun 01 2014
a(12n+6)/a(4n+2) = (a(6n+3)/a(2n+1))^2. - Bob Selcoe, Jun 01 2014
a(n) = Sum_{k=0..n-1} binomial(k-1, 2*k-n)*n/(n-k). - Peter Luschny, Sep 26 2014
From Peter Bala, Mar 19 2015: (Start)
a(n) = -(alpha^n - 1)*(beta^n - 1), where alpha = 1/2*(1 + sqrt(5)) and beta = (1/2)*(1 - sqrt(5)).
a(n) = -det(I - M^n) where I is the 2 X 2 identity matrix and M = [ 1, 1; 1, 0 ]. Cf. A129744.
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + Sum_{n >= 1} Fibonacci(n)*x^n. Cf. A004146. (End)
a(n) = A052952(n-1) + A052952(n-3). - R. J. Mathar, Jul 02 2018
a(n) = (L(2*n+1) - L(n+1)) mod (L(n+1)-1) for n > 0 where L(k)=A000032(k). - Art Baker, Jan 17 2019
a(n) = Sum_{j=n..2*n-1} L(j) mod Sum_{j=0..n-1} L(j) where L(j)=A000032(j). - Art Baker, Jan 20 2019
Convolution of (1, 0, 3, 0, 5, 0, 7, ...) and (1, 1, 1, 2, 3, 5, 8, 13, ...). - Gary W. Adamson, Jul 08 2019
a(n) = Sum_{d|n} d*A060280(d) = Sum_{d|n} A031367(d). [Baake, Roberts, Weiss, eq(2)]. - R. J. Mathar, Oct 19 2021

Extensions

Additional comments from Michael Somos, Aug 01 2002