cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 26 results. Next

A060280 Number of orbits of length n under the map whose periodic points are counted by A001350.

Original entry on oeis.org

1, 0, 1, 1, 2, 2, 4, 5, 8, 11, 18, 25, 40, 58, 90, 135, 210, 316, 492, 750, 1164, 1791, 2786, 4305, 6710, 10420, 16264, 25350, 39650, 61967, 97108, 152145, 238818, 374955, 589520, 927200, 1459960, 2299854, 3626200, 5720274, 9030450, 14263078, 22542396
Offset: 1

Views

Author

Thomas Ward, Mar 29 2001

Keywords

Comments

Euler transform is A000045. 1/((1-x)*(1-x^3)*(1-x^4)*(1-x^5)^2*(1-x^6)^2*...) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 5*x^5 + 8*x^6 + ... - Michael Somos, Jan 28 2003

Examples

			a(7)=4 since the 7th term of A001350 is 29 and the 1st is 1, so there are (29-1)/7 = 4 orbits of length 7.
x + x^3 + x^4 + 2*x^5 + 2*x^6 + 4*x^7 + 5*x^8 + 8*x^9 + 11*x^10 + 18*x^11 + ...
		

Crossrefs

First column of A348422.

Programs

  • Magma
    A060280:= func< n | n le 2 select 2-n else (&+[Lucas(d)*MoebiusMu(Floor(n/d)) : d in Divisors(n)])/n >;
    [A060280(n): n in [1..50]]; // G. C. Greubel, Nov 06 2024
    
  • Maple
    A060280 := proc(n)
        add( numtheory[mobius](d)*A001350(n/d), d=numtheory[divisors](n)) ;
        %/n;
    end proc: # R. J. Mathar, Jul 15 2016
  • Mathematica
    A001350[n_] := LucasL[n] - (-1)^n - 1;
    a[n_] := (1/n)*DivisorSum[n, MoebiusMu[#]*A001350[n/#]& ];
    Array[a, 50] (* Jean-François Alcover, Nov 23 2017 *)
  • PARI
    {a(n) = if( n<3, n==1, sumdiv( n, d, moebius(n/d) * (fibonacci(d - 1) + fibonacci(d + 1))) / n)} /* Michael Somos, Jan 28 2003 */
    
  • SageMath
    A000032=BinaryRecurrenceSequence(1,1,2,1)
    def A060280(n): return sum(A000032(k)*moebius(n/k) for k in (1..n) if (k).divides(n))//n - int(n==2)
    [A060280(n) for n in range(1,41)] # G. C. Greubel, Nov 06 2024

Formula

a(n) = (1/n)* Sum_{d|n} mu(d)*A001350(n/d).
a(n) = A006206(n) except for n=2. - Michael Somos, Jan 28 2003
a(n) = A031367(n)/n. - R. J. Mathar, Jul 15 2016
G.f.: Sum_{k>=1} mu(k)*log(1 + x^k/(1 - x^k - x^(2*k)))/k. - Ilya Gutkovskiy, May 18 2019

A324487 a(n) = A001350(n)^3.

Original entry on oeis.org

0, 1, 1, 64, 125, 1331, 4096, 24389, 91125, 438976, 1771561, 7880599, 32768000, 141420761, 594823321, 2537716544, 10720765125, 45537538411, 192699928576, 817138135549, 3460080078125, 14662949322176, 62103840598801, 263115950765039, 1114512556032000, 4721424167332081, 19999831641819121
Offset: 0

Views

Author

N. J. A. Sloane, Mar 12 2019

Keywords

Crossrefs

Formula

From Colin Barker, Mar 13 2019: (Start)
G.f.: x*(1 + x^2)*(1 - 3*x + 47*x^2 - 96*x^3 + 104*x^4 + 96*x^5 + 47*x^6 + 3*x^7 + x^8) / ((1 - x)*(1 + x)*(1 - 3*x + x^2)*(1 + x - x^2)*(1 - x - x^2)*(1 + 3*x + x^2)*(1 - 4*x - x^2)).
a(n) = 4*a(n-1) + 12*a(n-2) - 44*a(n-3) - 44*a(n-4) + 132*a(n-5) + 66*a(n-6) - 132*a(n-7) - 44*a(n-8) + 44*a(n-9) + 12*a(n-10) - 4*a(n-11) - a(n-12) for n>11. (End)

A329488 a(n) = A001350(n)^4.

Original entry on oeis.org

1, 1, 256, 625, 14641, 65536, 707281, 4100625, 33362176, 214358881, 1568239201, 10485760000, 73680216481, 500246412961, 3461445366016, 23639287100625, 162614549665681, 1113034787454976, 7639424429247601, 52333711181640625
Offset: 1

Views

Author

N. J. A. Sloane, Nov 15 2019

Keywords

Crossrefs

Cf. A001350.

Programs

  • PARI
    a001350(n) = fibonacci(n+1) + fibonacci(n-1) - 1 - (-1)^n
    a(n) = a001350(n)^4 \\ Felix Fröhlich, Nov 24 2019

A126069 Generates A001350, the associated Mersenne numbers; A001350(n)=Product[a(d)] for d|n.

Original entry on oeis.org

1, 1, 4, 5, 11, 4, 29, 9, 19, 11, 199, 4, 521, 29, 31, 49, 3571, 19, 9349, 25, 211, 199, 64079, 36, 15251
Offset: 1

Views

Author

John W. Layman, Feb 28 2007

Keywords

Comments

A 2001 Iranian Mathematical Olympiad question shows that such a generating sequence {a(n)} exists for the sequence {S(n)} whenever gcd(S(m),S(n)) = S(gcd(m,n)).

Examples

			The divisors of 6 are 1,2,3,6 and a(1)*a(2)*a(3)*a(6)=1*1*4*4=16, which is, in fact, A001350(6).
		

Crossrefs

A092184 Sequence S_6 of the S_r family.

Original entry on oeis.org

0, 1, 6, 25, 96, 361, 1350, 5041, 18816, 70225, 262086, 978121, 3650400, 13623481, 50843526, 189750625, 708158976, 2642885281, 9863382150, 36810643321, 137379191136, 512706121225, 1913445293766, 7141075053841, 26650854921600, 99462344632561, 371198523608646
Offset: 0

Views

Author

Rainer Rosenthal, Apr 03 2004

Keywords

Comments

The r-family of sequences is S_r(n) = 2*(T(n,(r-2)/2) - 1)/(r-4) provided r is not equal to 4 and S_4(n) = n^2 = A000290(n). Here T(n,x) are Chebyshev's polynomials of the first kind. See their coefficient triangle A053120. See also the R. Stephan link for the explicit formula for s_k(n) for k not equal to 4 (Stephan's s_k(n) is identical with S_r(n)).
An integer n is in this sequence iff mutually externally tangent circles with radii n, n+1, n+2 have Soddy circles (i.e., circles tangent to all three) of rational radius. - James R. Buddenhagen, Nov 16 2005
This sequence is a divisibility sequence, i.e., a(n) divides a(m) whenever n divides m. It is the case P1 = 6, P2 = 8, Q = 1 of the 3-parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Mar 25 2014
a(n) is the block size of the (n-1)-th design in a sequence of multi-set designs with 2 blocks, see A335649. - John P. McSorley, Jun 22 2020

Examples

			a(3)=25 because a(1)=1 and a(2)=6 and a(1)*a(3) = 1*25 = (6-1)^2 = (a(2)-1)^2.
		

Crossrefs

See A001110=S_36 for further references to S_r sequences.
Other members of this r-family are: A007877 (r=2), |A078070| (r=3), A004146 (r=5), A054493 (r=7). A098306, A100047. A001353, A001834. A001350, A052530.

Programs

  • Magma
    [Floor(1/2*(-2+(2+Sqrt(3))^n+(2-Sqrt(3))^n)): n in [0..30]]; // Vincenzo Librandi, Oct 14 2015
  • Maple
    A092184 := proc(n)
        option remember;
        if n <= 1 then
            n;
        else
            4*procname(n-1)-procname(n-2)+2 ;
        end if ;
    end proc:
    seq(A092184(n),n=0..10) ;# Zerinvary Lajos, Mar 09 2008
  • Mathematica
    Table[Simplify[ -((2 + Sqrt[3])^n - 1)*((2 - Sqrt[3])^n - 1)]/2, {n, 0, 26}] (* Stefan Steinerberger, May 15 2007 *)
    LinearRecurrence[{5,-5,1},{0,1,6},27] (* Ray Chandler, Jan 27 2014 *)
    CoefficientList[Series[x (1 + x)/(1 - 5 x + 5 x^2 - x^3), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 14 2015 *)
  • PARI
    Vec(x*(1+x)/(1 - 5*x + 5*x^2 - x^3) + O(x^50)) \\ Michel Marcus, Oct 14 2015
    

Formula

S_r type sequences are defined by a(0)=0, a(1)=1, a(2)=r and a(n-1)*a(n+1) = (a(n)-1)^2. This sequence emanates from r=6.
a(n) = 1/2*(-2 + (2+sqrt(3))^n + (2-sqrt(3))^n). - Ralf Stephan, Apr 14 2004
G.f.: x*(1+x)/(1 - 5*x + 5*x^2 - x^3) = x*(1+x)/((1-x)*(1 - 4*x + x^2)). [from the Ralf Stephan link]
a(n) = T(n, 2)-1 = A001075(n)-1, with Chebyshev's polynomials T(n, 2) of the first kind.
a(n) = b(n) + b(n-1), n >= 1, with b(n):=A061278(n) the partial sums of S(n, 4) = U(n, 2) = A001353(n+1) Chebyshev's polynomials of the second kind.
An integer k is in this sequence iff k is nonnegative and (k^2 + 2*k)/3 is a square. - James R. Buddenhagen, Nov 16 2005
a(0)=0, a(1)=1, a(n+1) = 3 + floor(a(n)*(2+sqrt(3))). - Anton Vrba (antonvrba(AT)yahoo.com), Jan 16 2007
a(n) = 4*a(n-1) - a(n-2) + 2. - Zerinvary Lajos, Mar 09 2008
From Peter Bala, Mar 25 2014: (Start)
a(2*n) = 6*A001353(n)^2; a(2*n+1) = A001834(n)^2.
a(n) = u(n)^2, where {u(n)} is the Lucas sequence in the quadratic integer ring Z[sqrt(6)] defined by the recurrence u(0) = 0, u(1) = 1, u(n) = sqrt(6)*u(n-1) - u(n-2) for n >= 2.
Equivalently, a(n) = U(n-1,sqrt(6)/2)^2, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = (1/2)*( ((sqrt(6) + sqrt(2))/2)^n - ((sqrt(6) - sqrt(2))/2)^n )^2.
a(n) = bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -2; 1, 3] and T(n,x) denotes the Chebyshev polynomial of the first kind. Cf. A098306.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
exp( Sum_{n >= 1} 2*a(n)*x^n/n ) = 1 + Sum_{n >= 1} A052530(n)*x^n. Cf. A001350. - Peter Bala, Mar 19 2015
E.g.f.: exp(2*x)*cosh(sqrt(3)*x) - cosh(x) - sinh(x). - Stefano Spezia, Oct 13 2019

Extensions

Extension and Chebyshev comments from Wolfdieter Lang, Sep 10 2004

A004146 Alternate Lucas numbers - 2.

Original entry on oeis.org

0, 1, 5, 16, 45, 121, 320, 841, 2205, 5776, 15125, 39601, 103680, 271441, 710645, 1860496, 4870845, 12752041, 33385280, 87403801, 228826125, 599074576, 1568397605, 4106118241, 10749957120, 28143753121, 73681302245, 192900153616, 505019158605, 1322157322201
Offset: 0

Views

Author

Keywords

Comments

This is the r=5 member in the r-family of sequences S_r(n) defined in A092184 where more information can be found.
Number of spanning trees of the wheel W_n on n+1 vertices. - Emeric Deutsch, Mar 27 2005
Also number of spanning trees of the n-helm graph. - Eric W. Weisstein, Jul 16 2011
a(n) is the smallest number requiring n terms when expressed as a sum of Lucas numbers (A000204). - David W. Wilson, Jan 10 2006
This sequence has a primitive prime divisor for all terms beyond the twelfth. - Anthony Flatters (Anthony.Flatters(AT)uea.ac.uk), Aug 17 2007
From Giorgio Balzarotti, Mar 11 2009: (Start)
Determinant of power series of gamma matrix with determinant 1:
a(n) = Determinant(A + A^2 + A^3 + A^4 + A^5 + ... + A^n)
where A is the submatrix A(1..2,1..2) of the matrix with factorial determinant
A = [[1,1,1,1,1,1,...],[1,2,1,2,1,2,...],[1,2,3,1,2,3,...],[1,2,3,4,1,2,...],
[1,2,3,4,5,1,...],[1,2,3,4,5,6,...],...]. Note: Determinant A(1..n,1..n)= (n-1)!.
See A158039, A158040, A158041, A158042, A158043, A158044, for sequences of matrix 2!,3!,... (End)
The previous comment could be rephrased as: a(n) = -det(A^n - I) where I is the 2 X 2 identity matrix and A = [1, 1; 1, 2]. - Peter Bala, Mar 20 2015
a(n) is also the number of points of Arnold's "cat map" that are on orbits of period n-1. This is a map of the two-torus T^2 into itself. If we regard T^2 as R^2 / Z^2, the action of this map on a two vector in R^2 is multiplication by the unit-determinant matrix A = [2, 1;1, 1], with the vector components taken modulo one. As such, an explicit formula for the n-th entry of this sequence is -det(I-A^n). - Bruce Boghosian, Apr 26 2009
7*a(n) gives the total number of vertices in a heptagonal hyperbolic lattice {7,3} with n total levels, in which an open heptagon is centered at the origin. - Robert M. Ziff, Apr 10 2011
The sequence is the case P1 = 5, P2 = 6, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - Peter Bala, Apr 03 2014
Determinants of the spiral knots S(3,k,(1,-1)). a(k) = det(S(3,k,(1,-1))). These knots are also the weaving knots W(k,3) and the Turk's Head Links THK(3,k). - Ryan Stees, Dec 14 2014
Even-indexed Fibonacci numbers (1, 3, 8, 21, ...) convolved with (1, 2, 2, 2, 2, ...). - Gary W. Adamson, Aug 09 2016
a(n) is the number of ways to tile a bracelet of length n with 1-color square, 2-color dominos, 3-color trominos, etc. - Yu Xiao, May 23 2020
a(n) is the number of face-labeled unfoldings of a pyramid whose base is a simple n-gon. Cf. A103536. - Rick Mabry, Apr 17 2023

Examples

			For k=3, b(3) = sqrt(5)*b(2) - b(1) = 5 - 1 = 4, so det(S(3,3,(1,-1))) = 4^2 = 16.
G.f. = x + 5*x^2 + 16*x^3 + 45*x^4 + 121*x^5 + 320*x^4 + 841*x^5 + ... - _Michael Somos_, Feb 10 2023
		

References

  • I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (p. 193, Problem 3.3.40 (a)).
  • N. Hartsfield and G. Ringel, Pearls in Graph Theory, p. 102. Academic Press: 1990.
  • B. Hasselblatt and A. Katok, "Introduction to the Modern Theory of Dynamical Systems," Cambridge University Press, 1997.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

This is the r=5 member of the family S_r(n) defined in A092184.
Cf. A005248. Partial sums of A002878. Pairwise sums of A027941. Bisection of A074392.
Sequence A032170, the Möbius transform of this sequence, is then the number of prime periodic orbits of Arnold's cat map. - Bruce Boghosian, Apr 26 2009
Cf. A103536 for the number of geometrically distinct edge-unfoldings of the regular pyramid. - Rick Mabry, Apr 17 2023

Programs

  • Magma
    [Lucas(n)-2: n in [0..60 by 2]]; // Vincenzo Librandi, Mar 20 2015
  • Mathematica
    Table[LucasL[2*n] - 2, {n, 0, 20}]
    (* Second program: *)
    LinearRecurrence[{4, -4, 1}, {0, 1, 5}, 30] (* Jean-François Alcover, Jan 08 2019 *)
  • PARI
    a(n) = { we = quadgen(5);((1+we)^n) + ((2-we)^n) - 2;} /* Michel Marcus, Aug 18 2012 */
    

Formula

a(n) = A005248(n) - 2 = A000032(2*n) - 2.
a(n+1) = 3*a(n) - a(n-1) + 2.
G.f.: x*(1+x)/(1-4*x+4*x^2-x^3) = x*(1+x)/((1-x)*(1-3*x+x^2)).
a(n) = 2*(T(n, 3/2)-1) with Chebyshev's polynomials T(n, x) of the first kind. See their coefficient triangle A053120.
a(n) = 4*a(n-1) - 4*a(n-2) + a(n-3), n>=3, a(0)=0, a(1)=1, a(2)=5.
a(n) = 2*T(n, 3/2) - 2, with twice the Chebyshev polynomials of the first kind, 2*T(n, x=3/2) = A005248(n).
a(n) = b(n) + b(n-1), n>=1, with b(n):=A027941(n-1), n>=1, b(-1):=0, the partial sums of S(n, 3) = U(n, 3/2) = A001906(n+1), with S(n, x) = U(n, x/2) Chebyshev's polynomials of the second kind.
a(2n) = A000204(2n)^2 - 4 = 5*A000045(2n)^2; a(2n+1) = A000204(2n+1)^2. - David W. Wilson, Jan 10 2006
a(n) = ((3+sqrt(5))/2)^n + ((3-sqrt(5))/2)^n - 2. - Felix Goldberg (felixg(AT)tx.technion.ac.il), Jun 09 2001
a(n) = b(n-1) + b(n-2), n>=1, with b(n):=A027941(n), b(-1):=0, partial sums of S(n, 3) = U(n, 3/2) = A001906(n+1), Chebyshev's polynomials of the second kind.
a(n) = n*Sum_{k=1..n} binomial(n+k-1,2*k-1)/k, n > 0. - Vladimir Kruchinin, Sep 03 2010
a(n) = floor(tau^(2*n)*(tau^(2*n) - floor(tau^(2*n)))), where tau = (1+sqrt(5))/2. - L. Edson Jeffery, Aug 26 2013
From Peter Bala, Apr 03 2014: (Start)
a(n) = U(n-1,sqrt(5)/2)^2, for n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, -3/2; 1, 5/2] and T(n,x) denotes the Chebyshev polynomial of the first kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(k) = det(S(3,k,(1,-1))) = b(k)^2, where b(1)=1, b(2)=sqrt(5), b(k)=sqrt(5)*b(k-1) - b(k-2) = b(2)*b(k-1) - b(k-2). - Ryan Stees, Dec 14 2014
exp( Sum_{n >= 1} a(n)*x^n/n ) = 1 + Sum_{n >= 1} Fibonacci(2*n)*x^n. Cf. A001350. - Peter Bala, Mar 19 2015
E.g.f.: exp(phi^2*x) + exp(x/phi^2) - 2*exp(x), where phi = (1 + sqrt(5))/2. - G. C. Greubel, Aug 24 2015
a(n) = a(-n) for all n in Z. - Michael Somos, Aug 27 2015
From Peter Bala, Jun 03 2016: (Start)
a(n) = Lucas(2*n) - Lucas(0*n);
a(n)^2 = Lucas(4*n) - 3*Lucas(2*n) + 3*Lucas(0*n) - Lucas(-2*n);
a(n)^3 = Lucas(6*n) - 5*Lucas(4*n) + 10*Lucas(2*n) - 10*Lucas(0*n) + 5*Lucas(-2*n) - Lucas(-4*n) and so on (follows from Binet's formula for Lucas(2*n) and the algebraic identity (x + 1/x - 2)^m = f(x) + f(1/x) where f(x) = (x - 1)^(2*m - 1)/x^(m-1) ). (End)
Limit_{n->infinity} a(n+1)/a(n) = (3 + sqrt(5))/2 = A104457. - Ilya Gutkovskiy, Jun 03 2016
a(n) = (phi^n - phi^(-n))^2, where phi = A001622 = (1 + sqrt(5))/2. - Diego Rattaggi, Jun 10 2020
a(n) = 4*sinh(n*A002390)^2, where A002390 = arcsinh(1/2). - Gleb Koloskov, Sep 18 2021
a(n) = 5*F(n)^2 = L(n)^2 - 4 if n even and a(n) = L(n)^2 = 5*F(n)^2 - 4 if n odd. - Michael Somos, Feb 10 2023
a(n) = n^2 + Sum_{i=1..n-1} i*a(n-i). - Fern Gossow, Dec 03 2024

Extensions

Correction to formula from Nephi Noble (nephi(AT)math.byu.edu), Apr 09 2002
Chebyshev comments from Wolfdieter Lang, Sep 10 2004

A098600 a(n) = Fibonacci(n-1) + Fibonacci(n+1) - (-1)^n.

Original entry on oeis.org

1, 2, 2, 5, 6, 12, 17, 30, 46, 77, 122, 200, 321, 522, 842, 1365, 2206, 3572, 5777, 9350, 15126, 24477, 39602, 64080, 103681, 167762, 271442, 439205, 710646, 1149852, 1860497, 3010350, 4870846, 7881197, 12752042, 20633240, 33385281, 54018522
Offset: 0

Views

Author

Paul Barry, Sep 17 2004

Keywords

Comments

Row sums of A098599.

Crossrefs

Programs

  • Magma
    [Fibonacci(n-1) + Fibonacci(n+1) - (-1)^n: n in [0..50]]; // Vincenzo Librandi, Aug 31 2014
    
  • Mathematica
    Table[-(-1)^n + LucasL[n], {n, 0, 39}] (* Alonso del Arte, Aug 30 2014 *)
    Table[Fibonacci[n - 1] + Fibonacci[n + 1] - (-1)^n, {n, 0, 40}] (* Vincenzo Librandi, Aug 31 2014 *)
    CoefficientList[ Series[-(1 + 2x)/(-1 + 2x^2 + x^3), {x, 0, 40}], x] (* or *)
    LinearRecurrence[{0, 2, 1}, {1, 2, 2}, 40] (* Robert G. Wilson v, Mar 09 2018 *)
  • PARI
    a(n)=fibonacci(n-1) + fibonacci(n+1) - (-1)^n; \\ Joerg Arndt, Oct 18 2014
    
  • PARI
    Vec((1+2*x)/((1+x)*(1-x-x^2)) + O(x^30)) \\ Colin Barker, Jun 03 2016
    
  • SageMath
    [lucas_number2(n,1,-1) -(-1)^n for n in range(51)] # G. C. Greubel, Mar 26 2024

Formula

G.f.: (1+2*x) / ((1+x)*(1-x-x^2)).
a(n) = Sum_{k = 0..n} binomial(k, n-k) + binomial(k-1, n-k-1).
a(n) = A020878(n) - 1 = A001350(n) + 1.
a(n) = Lucas(n) - (-1)^n. - Paul Barry, Dec 01 2004
a(n) = A181716(n+1). - Richard R. Forberg, Aug 30 2014
a(n) = [x^n] ( (1 + x + sqrt(1 + 6*x + 5*x^2))/2 )^n. exp( Sum_{n >= 1} a(n)*x^n/n ) = Sum_{n >= 0} Fibonacci(n+2)*x^n. Cf. A182143. - Peter Bala, Jun 29 2015
From Colin Barker, Jun 03 2016: (Start)
a(n) = (-(-1)^n + ((1/2)*(1-sqrt(5)))^n + ((1/2)*(1+sqrt(5)))^n).
a(n) = 2*a(n-2) + a(n-3) for n > 2. (End)
E.g.f.: (2*exp(3*x/2)*cosh(sqrt(5)*x/2) - 1)*exp(-x). - Ilya Gutkovskiy, Jun 03 2016
a(n) = A014217(n) + A000035(n). - Paul Curtz, Jul 27 2023

A050140 a(n) = 2*floor(n*phi)-n, where phi = (1+sqrt(5))/2.

Original entry on oeis.org

1, 4, 5, 8, 11, 12, 15, 16, 19, 22, 23, 26, 29, 30, 33, 34, 37, 40, 41, 44, 45, 48, 51, 52, 55, 58, 59, 62, 63, 66, 69, 70, 73, 76, 77, 80, 81, 84, 87, 88, 91, 92, 95, 98, 99, 102, 105, 106, 109, 110, 113, 116, 117, 120, 121, 124, 127, 128, 131, 134, 135, 138, 139
Offset: 1

Views

Author

Keywords

Comments

Old name was a(n) = last number in repeating block in continued fraction for n*phi.

References

  • Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, 101-103.

Crossrefs

Programs

  • Magma
    [-n + 2*Floor(n*(1+Sqrt(5))/2): n in [1..50]]; // G. C. Greubel, Oct 15 2017
    
  • Mathematica
    Table[-n+2Floor[n*GoldenRatio],{n,1,100}]
  • PARI
    for(n=1,50, print1(-n + 2*floor(n*(1+sqrt(5))/2), ", ")) \\ G. C. Greubel, Oct 15 2017
    
  • Python
    def A050140(n): return (n+isqrt(5*n**2)&-2)-n # Chai Wah Wu, Aug 25 2022

Formula

a(n) = -n + 2*floor(n*phi) = A283233(n)-n.
a(n) = floor(n*phi) + floor(n*sigma) where phi = (sqrt(5)+1)/2 and sigma = (sqrt(5)-1)/2.
a(n) = last number in repeating block in continued fraction for n*phi.

Extensions

Formula and more terms from Vladeta Jovovic, Nov 23 2001
Name changed by Michel Dekking, Dec 27 2017

A031367 Inflation orbit counts.

Original entry on oeis.org

1, 0, 3, 4, 10, 12, 28, 40, 72, 110, 198, 300, 520, 812, 1350, 2160, 3570, 5688, 9348, 15000, 24444, 39402, 64078, 103320, 167750, 270920, 439128, 709800, 1149850, 1859010, 3010348, 4868640, 7880994, 12748470, 20633200, 33379200, 54018520, 87394452, 141421800
Offset: 1

Views

Author

Keywords

Comments

Also number of primitive Lucas strings of length n [Ashrafi et al.] - N. J. A. Sloane, Nov 19 2014
The preceding comment is true for all n except n=2, as there are 2 primitive Lucas strings of length 2. The sequence of the number of primitive Lucas strings is the Möbius transform of the Lucas numbers A000032. - Pontus von Brömssen, Jan 24 2019

Crossrefs

Programs

  • Maple
    A031367 := proc(n)
        add( numtheory[mobius](d)*A001350(n/d), d=numtheory[divisors](n)) ;
    end proc: # R. J. Mathar, Jul 15 2016
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(a(i)/i+j-1, j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    a:= proc(n) a(n):= ((<<0|1>, <1|1>>^n)[1, 2]-b(n, n-1))*n end:
    seq(a(n), n=1..40);  # Alois P. Heinz, Jun 22 2018
  • Mathematica
    a[n_] := n*Sum[MoebiusMu[d]*Sum[Binomial[k-1, 2k-n/d]/(n-d*k), {k, 0, n/d-1} ], {d, Divisors[n]}];
    Array[a, 40] (* Jean-François Alcover, Jul 09 2018 *)

Formula

If b(n) is the n-th term of A001350, then a(n) = Sum_{d|n} mu(d)b(n/d).
a(n) = n * A060280(n).
G.f.: Sum_{k>=1} mu(k) * x^k * (1 + x^(2*k)) / ((1 - x^(2*k)) * (1 - x^k - x^(2*k))). - Ilya Gutkovskiy, Feb 06 2020

Extensions

More terms from James Sellers

A020878 Number of maximum matchings in the n-Moebius ladder M_n.

Original entry on oeis.org

2, 3, 3, 6, 7, 13, 18, 31, 47, 78, 123, 201, 322, 523, 843, 1366, 2207, 3573, 5778, 9351, 15127, 24478, 39603, 64081, 103682, 167763, 271443, 439206, 710647, 1149853, 1860498, 3010351, 4870847, 7881198, 12752043, 20633241, 33385282, 54018523, 87403803
Offset: 0

Views

Author

Keywords

References

  • J. P. McSorley, Counting structures in the Moebius ladder, Discrete Math., 184 (1998), 137-164.

Programs

  • Magma
    I:=[2, 3, 3, 6]; [n le 4 select I[n] else Self(n-1)+2*Self(n-2)-Self(n-3)-Self(n-4): n in [1..40]]; // Vincenzo Librandi, Apr 20 2012
    
  • Mathematica
    CoefficientList[Series[(2+x-4*x^2-x^3)/((1+x)*(1-x)*(1-x-x^2)),{x,0,40}],x] (* Vincenzo Librandi, Apr 20 2012 *)
    Table[1 - (-1)^n + LucasL[n], {n, 20}] (* Eric W. Weisstein, Dec 31 2017 *)
    LinearRecurrence[{1, 2, -1, -1}, {3, 3, 6, 7}, 20] (* Eric W. Weisstein, Dec 31 2017 *)
  • PARI
    Vec((2 + x - 4*x^2 - x^3) / ((1 - x)*(1 + x)*(1 - x - x^2)) + O(x^50)) \\ Colin Barker, Jul 12 2017

Formula

If n mod 2 = 0 then L(n) else L(n)+2, where L() are the Lucas numbers.
a(n) = A001350(n) + 2.
G.f.: (2 + x - 4*x^2 - x^3) / ((1 - x)*(1 + x)*(1 - x - x^2)). - Colin Barker, Jan 23 2012
From Colin Barker, Jul 12 2017: (Start)
a(n) = ((1 - sqrt(5))/2)^n + ((1 + sqrt(5))/2)^n for n even.
a(n) = ((1 - sqrt(5))/2)^n + ((1 + sqrt(5))/2)^n + 2 for n odd.
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>3.
(End)
Showing 1-10 of 26 results. Next