A103814 Pentanacci constant: decimal expansion of limit of A001591(n+1)/A001591(n).
1, 9, 6, 5, 9, 4, 8, 2, 3, 6, 6, 4, 5, 4, 8, 5, 3, 3, 7, 1, 8, 9, 9, 3, 7, 3, 7, 5, 9, 3, 4, 4, 0, 1, 3, 9, 6, 1, 5, 1, 3, 2, 7, 1, 7, 7, 4, 5, 6, 8, 6, 1, 3, 9, 3, 2, 3, 6, 9, 3, 4, 5, 0, 8, 4, 4, 2, 2, 5, 2, 7, 1, 2, 8, 7, 1, 8, 8, 6, 8, 8, 1, 7, 3, 4, 8, 1, 8, 6, 6, 5, 5, 5, 4, 6, 3, 0, 4, 7, 2, 0, 2, 1, 3, 0
Offset: 1
Examples
1.965948236645485337189937375934401396151327177456861393236934508442...
References
- Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, p. 101, Simon & Schuster, NY, 1961.
Links
- S. Litsyn and Vladimir Shevelev, Irrational Factors Satisfying the Little Fermat Theorem, International Journal of Number Theory, vol.1, no.4 (2005), 499-512.
- Vladimir Shevelev, A property of n-bonacci constant, Seqfan (Mar 23 2014)
- Eric Weisstein et al., Tetranacci Constant.
- Eric Weisstein's World of Mathematics, Pentanacci Constant
- Eric Weisstein's World of Mathematics, Pentanacci Number
- Index entries for algebraic numbers, degree 5.
Crossrefs
Programs
-
Mathematica
RealDigits[Root[x^5-Total[x^Range[0,4]],1],10,120][[1]] (* Harvey P. Dale, Mar 22 2017 *)
-
PARI
solve(x=1, 2, 1+x+x^2+x^3+x^4-x^5) \\ Michel Marcus, Mar 21 2014
Comments