cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 57 results. Next

A103814 Pentanacci constant: decimal expansion of limit of A001591(n+1)/A001591(n).

Original entry on oeis.org

1, 9, 6, 5, 9, 4, 8, 2, 3, 6, 6, 4, 5, 4, 8, 5, 3, 3, 7, 1, 8, 9, 9, 3, 7, 3, 7, 5, 9, 3, 4, 4, 0, 1, 3, 9, 6, 1, 5, 1, 3, 2, 7, 1, 7, 7, 4, 5, 6, 8, 6, 1, 3, 9, 3, 2, 3, 6, 9, 3, 4, 5, 0, 8, 4, 4, 2, 2, 5, 2, 7, 1, 2, 8, 7, 1, 8, 8, 6, 8, 8, 1, 7, 3, 4, 8, 1, 8, 6, 6, 5, 5, 5, 4, 6, 3, 0, 4, 7, 2, 0, 2, 1, 3, 0
Offset: 1

Views

Author

Jonathan Vos Post, Mar 29 2005

Keywords

Comments

The pentanacci constant P is the limit as n -> infinity of the ratio of Pentanacci(n+1)/Pentanacci(n) = A001591(n+1)/A001591(n), which is the principal root of x^5-x^4-x^3-x^2-x-1 = 0. Note that we have: P + P^-5 = 2.
The pentanacci constant corresponds to the Golden Section in a fivepartite division 1 = u_1 + u_2 + u_3 + u_4 + u_5 of a unit line segment, i.e., if 1/u_1 = u_1/u_2 = u_2/u_3 = u_3/u_4 + u_4/u_5 = c, c is the pentanacci constant. - Seppo Mustonen, Apr 19 2005
The other 4 roots of the polynomial 1+x+x^2+x^3+x^4-x^5 are the two complex-conjugated pairs -0.6783507129699967... +- i * 0.458536187273144499.. and 0.1953765946472540452... +- i * 0.848853640546245551858... - R. J. Mathar, Oct 25 2008
The continued fraction expansion is 1, 1, 28, 2, 1, 2, 1, 1, 1, 2, 4, 2, 1, 3, 1, 6, 1, 4, 1, 1, 5, 3, 2, 15, 69, 1, 1, 14, 1, 8, 1, 6,... - R. J. Mathar, Mar 09 2012
For n>=5, round(c^prime(n)) == 1 (mod 2*prime(n)). Proof in Shevelev link. - Vladimir Shevelev, Mar 21 2014
Note that the k-nacci constant approaches 2 when k approaches infinity (Martin Gardner). - Bernard Schott, May 07 2022

Examples

			1.965948236645485337189937375934401396151327177456861393236934508442...
		

References

  • Martin Gardner, The Second Scientific American Book Of Mathematical Puzzles and Diversions, "Phi: The Golden Ratio", Chapter 8, p. 101, Simon & Schuster, NY, 1961.

Crossrefs

Cf. A001591.
k-nacci constants: A001622 (Fibonacci), A058265 (tribonacci), A086088 (tetranacci), this sequence (pentanacci), A118427 (hexanacci), A118428 (heptanacci).

Programs

  • Mathematica
    RealDigits[Root[x^5-Total[x^Range[0,4]],1],10,120][[1]] (* Harvey P. Dale, Mar 22 2017 *)
  • PARI
    solve(x=1, 2, 1+x+x^2+x^3+x^4-x^5) \\ Michel Marcus, Mar 21 2014

A106303 Period of the Fibonacci 5-step sequence A001591 mod n.

Original entry on oeis.org

1, 6, 104, 12, 781, 312, 2801, 24, 312, 4686, 16105, 312, 30941, 16806, 81224, 48, 88741, 312, 13032, 9372, 291304, 96630, 12166, 312, 3905, 185646, 936, 33612, 70728, 243672, 190861, 96, 1674920, 532446, 2187581, 312, 1926221, 13032
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This sequence can differ from the corresponding Lucas sequence (A106297) only when n is a multiple of 2 or 599 because 9584 is the discriminant of the characteristic polynomial x^5-x^4-x^3-x^2-x-1 and the prime factors of 9584 are 2 and 599. [Corrected by Avery Diep, Aug 25 2025]

Crossrefs

Cf. A001591, A106273 (discriminant of the polynomial x^n-x^(n-1)-...-x-1), A106297 (period of Lucas 5-step sequence mod n).

Programs

  • Mathematica
    n=5; Table[p=i; a=Join[{1}, Table[0, {n-1}]] a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 50}]
  • Python
    from itertools import count
    def A106303(n):
        a = b = (0,)*4+(1 % n,)
        s = 1 % n
        for m in count(1):
            b, s = b[1:] + (s,), (s+s-b[0]) % n
            if a == b:
                return m # Chai Wah Wu, Feb 21-27 2022

Formula

Let the prime factorization of n be p1^e1...pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)).
Conjectures: a(5^k) = 781*5^(k-1) for k > 0. If a(p) != a(p^2) for p prime, then a(p^k) = p^(k-1)*a(p) for k > 0. - Chai Wah Wu, Feb 25 2022

A288120 Number of partitions of n into distinct pentanacci numbers (with a single type of 1) (A001591).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2
Offset: 0

Views

Author

Ilya Gutkovskiy, Jun 05 2017

Keywords

Comments

The first occurrences of 1, 2, 3, 4, 5, ... are at n=0, 31, 912, 1824, 26815, ... - Antti Karttunen, Dec 22 2017

Examples

			a(31) = 2 because we have [31] and [16, 8, 4, 2, 1].
		

Crossrefs

Programs

  • PARI
    A001591(n) = { if(n<=3,return(0)); my(p0=0,p1=0,p2=0,p3=1,p4=1,old_p0); while(n>5,n--;old_p0=p0;p0=p1;p1=p2;p2=p3;p3=p4;p4=old_p0+p0+p1+p2+p3;); p4; }
    v288120nthgen(up_to) = { my(k=6,fk,vec = [1],vec2); while(k<=up_to, fk = A001591(k); k++; vec2 = vector(length(vec)+fk,i,(i==fk)+if(i>fk,vec[i-fk],0)+if(i<=length(vec),vec[i],0)); vec = vec2); vector(fk,i,vec[i]); }
    write_to_bfile_with_a0_as_given(a0,vec,bfilename) = { write(bfilename, 0, " ", a0); for(n=1, length(vec), write(bfilename, n, " ", vec[n])); }
    write_to_bfile_with_a0_as_given(1,v288120nthgen(21),"b288120.txt"); \\ Antti Karttunen, Dec 22 2017
    
  • Scheme
    (define (A288120 n) (let ((s (list 0))) (let fork ((r n) (i 5)) (cond ((zero? r) (set-car! s (+ 1 (car s)))) ((> (A001591 i) r) #f) (else (begin (fork (- r (A001591 i)) (+ 1 i)) (fork r (+ 1 i)))))) (car s)))
    ;; This one uses memoization-macro definec
    (definec (A001591 n) (cond ((<= n 3) 0) ((= 4 n) 1) (else (+ (A001591 (- n 1)) (A001591 (- n 2)) (A001591 (- n 3)) (A001591 (- n 4)) (A001591 (- n 5))))))
    ;; Antti Karttunen, Dec 22 2017

Formula

G.f.: Product_{k>=5} (1 + x^A001591(k)).

Extensions

More terms from Antti Karttunen, Dec 22 2017

A104412 Number of prime factors, with multiplicity, of the pentanacci numbers A001591.

Original entry on oeis.org

0, 0, 1, 2, 3, 4, 1, 1, 5, 3, 5, 6, 2, 4, 6, 5, 9, 6, 2, 2, 6, 4, 6, 7, 1, 3, 3, 6, 4, 7, 4, 2, 7, 3, 9, 7, 3, 2, 2, 8, 9, 8, 2, 4, 11, 7, 9, 7, 7, 2, 4, 5, 6, 7, 3, 2, 7, 7, 13, 8, 4, 5, 5, 6, 10, 5, 4, 7, 11, 7, 8, 9, 4, 5, 4, 8, 7, 8, 4, 5, 6, 5, 10, 12, 2, 4, 5, 9, 12, 11, 7, 4, 13
Offset: 4

Views

Author

Jonathan Vos Post, Mar 05 2005

Keywords

Comments

Prime pentanacci numbers (A105757) correspond to 1s in the sequence, semiprimes to 2, and so forth.

Crossrefs

Programs

  • Mathematica
    PrimeOmega/@Drop[LinearRecurrence[{1,1,1,1,1},{0,0,0,0,1},100],4] (* Harvey P. Dale, Mar 30 2019 *)

Formula

a(n) = A001222(A001591(n)). a(n) = bigomega(A001591(n)).

Extensions

Offset corrected by Joerg Arndt, Dec 19 2020

A105756 Indices of prime Fibonacci 5-step numbers, A001591.

Original entry on oeis.org

3, 7, 8, 25, 146, 169, 182, 751, 812, 1507, 1591, 3157, 3752, 10651, 12740, 71804, 155953
Offset: 1

Views

Author

T. D. Noe, Apr 22 2005

Keywords

Comments

No other n < 44000.
The Noe and Post reference below utilizes a scheme for its indices which differs by 3 from the indices in A001591. - Robert Price, Oct 13 2014
The sequence is similar to A248757 which uses the indexing scheme starting at 0 as defined by A001591. - Robert Price, Oct 13 2014
a(18) > 2*10^5. - Robert Price, Oct 13 2014

Crossrefs

Cf. A105757 (prime Fibonacci 5-step numbers).

Programs

  • Mathematica
    a = {1, 0, 0, 0, 0}; lst = {}; Do[s = Plus @@ a; a = RotateLeft[a];
      a[[-1]] = s; If[PrimeQ[s], AppendTo[lst, n]], {n, 44000}]; lst
    Flatten[Position[LinearRecurrence[{1,1,1,1,1},{0,0,0,0,1},13000],?PrimeQ]]-4 (* _Harvey P. Dale, Mar 06 2023 *)

Extensions

Restored original sequence after reconsideration and added a(16)-a(17) by Robert Price, Oct 13 2014

A105757 Prime Fibonacci 5-step numbers, A001591.

Original entry on oeis.org

2, 31, 61, 5976577, 1989179797398599794811479787771439644489521, 11241696329548911284929550459702062135838997526529, 73666302576706758839299120422550197113618385815703101
Offset: 1

Views

Author

T. D. Noe, Apr 22 2005

Keywords

Crossrefs

Cf. A105756 (indices of prime Fibonacci 5-step numbers).

Programs

  • Mathematica
    a={1, 0, 0, 0, 0}; lst={}; Do[s=Plus@@a; a=RotateLeft[a]; a[[ -1]]=s; If[PrimeQ[s], AppendTo[lst, s]], {n, 1000}]; lst

A106304 Period of the Fibonacci 5-step sequence A001591 mod prime(n).

Original entry on oeis.org

6, 104, 781, 2801, 16105, 30941, 88741, 13032, 12166, 70728, 190861, 1926221, 2896405, 79506, 736, 8042221, 102689, 3720, 20151120, 2863280, 546120, 39449441, 48030024, 3690720, 29509760, 104060400, 37516960, 132316201, 28231632, 6384, 86714880, 2248090, 3128
Offset: 1

Views

Author

T. D. Noe, May 02 2005, Nov 19 2006

Keywords

Comments

This sequence is the same as the period of the Lucas 5-step sequence (A106298) mod prime(n) except for n=1 and 109, which correspond to the primes 2 and 599, because 9584 is the discriminant of the characteristic polynomial x^5-x^4-x^3-x^2-x-1 and the prime factors of 9584 are 2 and 599. We have a(n) < prime(n) for the primes in A106281.

Crossrefs

Cf. A106281 (primes p such that x^5-x^4-x^3-x^2-x-1 mod p has 5 distinct zeros).

Programs

  • Mathematica
    n=5; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 40}]
  • Python
    from itertools import count
    from sympy import prime
    def A106304(n):
        a = b = (0,)*4+(1 % (p:= prime(n)),)
        s = 1 % p
        for m in count(1):
            b, s = b[1:] + (s,), (s+s-b[0]) % p
            if a == b:
                return m # Chai Wah Wu, Feb 22-27 2022

Formula

a(n) = A106303(prime(n)).

Extensions

a(31)-a(33) from Chai Wah Wu, Feb 27 2022

A107243 Sum of squares of pentanacci numbers (A001591).

Original entry on oeis.org

0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1303, 5024, 19424, 75120, 290416, 1122160, 4337009, 16762634, 64787534, 250400910, 967783566, 3740437902, 14456621263, 55874162432, 215950971648, 834640190272, 3225844698176, 12467736540480
Offset: 0

Views

Author

Jonathan Vos Post, May 19 2005

Keywords

Examples

			a(0) = 0 = 0^2 since F_5(0) = A001591(0) = 0.
a(1) = 0 = 0^2 + 0^2
a(2) = 0 = 0^2 + 0^2 + 0^2
a(3) = 0 = 0^2 + 0^2 + 0^2 + 0^2
a(4) = 1 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2
a(5) = 2 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2
a(6) = 6 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2
a(7) = 22 = 0^2 + 0^2 + 0^2 + 0^2 + 1^2 + 1^2 + 2^2 + 4^2
a(8) = 86 = 8^2 + 22
a(9) = 342 = 16^2 + 86
		

Crossrefs

Programs

  • Mathematica
    Accumulate[LinearRecurrence[{1,1,1,1,1},{0,0,0,0,1},30]^2] (* Harvey P. Dale, Jan 04 2015 *)
    LinearRecurrence[{3, 2, 3, 7, 14, -32, -2, 6, -4, -6, 10, 1, -1, 0, 1, -1},{0, 0, 0, 0, 1, 2, 6, 22, 86, 342, 1303, 5024, 19424, 75120, 290416, 1122160},28] (* Ray Chandler, Aug 02 2015 *)

Formula

a(n) = F_5(1)^2 + F_5(1)^2 + F_5(2)^2 + ... F_5(n)^2 where F_5(n) = A001591(n). a(0) = 0, a(n+1) = a(n) + A001591(n)^2.
a(n)= 3*a(n-1) +2*a(n-2) +3*a(n-3) +7*a(n-4) +14*a(n-5) -32*a(n-6) -2*a(n-7) +6*a(n-8) -4*a(n-9) -6*a(n-10) +10*a(n-11) +a(n-12) -a(n-13) +a(n-15) -a(n-16). [R. J. Mathar, Aug 11 2009]
G.f.: x^4*(x^10 +x^9 +x^7 +x^6 -6*x^5 -5*x^4 -3*x^3 -2*x^2 -x +1) / ((x -1)*(x^5 +x^4 +x^3 +3*x^2 +3*x -1)*(x^10 -x^9 -x^7 +x^6 -6*x^5 +3*x^4 +3*x^3 +2*x^2 +x +1)). - Colin Barker, May 08 2013

Extensions

a(26) and a(27) corrected by R. J. Mathar, Aug 11 2009

A248757 Indices of prime Fibonacci 5-step numbers, A001591.

Original entry on oeis.org

6, 10, 11, 28, 149, 172, 185, 754, 815, 1510, 1594, 3160, 3755, 10654, 12743, 71807, 155957
Offset: 1

Views

Author

Robert Price, Oct 13 2014

Keywords

Comments

This sequence is similar to A105756 but uses the indexing scheme defined by A001591 whose indices start with 0.
a(18) > 2*10^5.

Crossrefs

Programs

  • Mathematica
    a = {0, 0, 0, 0, 1}; For[n = 5, n ≤ 1000, n++, sum = Plus @@ a;
      If[PrimeQ[sum], Print[n]]; a = RotateLeft[a]; a[[5]] = sum]

Formula

a(n) = A105756 (n) + 3.

A357455 Number of compositions (ordered partitions) of n into pentanacci numbers 1,2,4,8,16,31, ... (A001591).

Original entry on oeis.org

1, 1, 2, 3, 6, 10, 18, 31, 56, 98, 174, 306, 542, 956, 1690, 2983, 5272, 9310, 16448, 29050, 51318, 90644, 160118, 282826, 499590, 882468, 1558798, 2753448, 4863696, 8591212, 15175514, 26805984, 47350057, 83639033, 147739853, 260967374, 460972308, 814260589
Offset: 0

Views

Author

Ilya Gutkovskiy, Sep 29 2022

Keywords

Crossrefs

Programs

Formula

G.f.: 1 / (1 - Sum_{k>=5} x^A001591(k)).
Showing 1-10 of 57 results. Next