A001608 Perrin sequence (or Ondrej Such sequence): a(n) = a(n-2) + a(n-3) with a(0) = 3, a(1) = 0, a(2) = 2.
3, 0, 2, 3, 2, 5, 5, 7, 10, 12, 17, 22, 29, 39, 51, 68, 90, 119, 158, 209, 277, 367, 486, 644, 853, 1130, 1497, 1983, 2627, 3480, 4610, 6107, 8090, 10717, 14197, 18807, 24914, 33004, 43721, 57918, 76725, 101639, 134643, 178364, 236282, 313007, 414646, 549289
Offset: 0
Examples
From _Roman Witula_, Feb 01 2013: (Start) We note that if a + b + c = 0 then: 1) a^3 + b^3 + c^3 = 3*a*b*c, 2) a^4 + b^4 + c^4 = 2*((a^2 + b^2 + c^2)/2)^2, 3) (a^5 + b^5 + c^5)/5 = (a^3 + b^3 + c^3)/3 * (a^2 + b^2 + c^2)/2, 4) (a^7 + b^7 + c^7)/7 = (a^5 + b^5 + c^5)/5 * (a^2 + b^2 + c^2)/2 = 2*(a^3 + b^3 + c^3)/3 * (a^4 + b^4 + c^4)/4, 5) (a^7 + b^7 + c^7)/7 * (a^3 + b^3 + c^3)/3 = ((a^5 + b^5 + c^5)/5)^2. Hence, by the Binet formula for a(n) we obtain the relations: a(3) = 3, a(4) = 2*(a(2)/2)^2 = 2, a(5)/5 = a(3)/3 * a(2)/2, i.e., a(5) = 5, and similarly that a(7) = 7. (End)
References
- Olivier Bordellès, Thèmes d'Arithmétique, Ellipses, 2006, Exercice 4.11, p. 127.0
- Steven R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.2.2.
- Dmitry Fomin, On the properties of a certain recursive sequence, Mathematics and Informatics Quarterly, Vol. 3 (1993), pp. 50-53.
- Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 70.
- Manfred Schroeder, Number Theory in Science and Communication, 3rd ed., Springer, 1997.
- A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan numbers, International Journal of Mathematical Education in Science and Technology, Volume 37:7 (2006), 825-831. See Q_n.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Indranil Ghosh, Table of n, a(n) for n = 0..8172 (terms 0..1000 from T. D. Noe)
- Sadjia Abbad and Hacène Belbachir, The r-Fibonacci polynomial and its companion sequences linked with some classical sequences, Integers (2025), Vol. 25, Art. No. A38. See p. 17.
- William Adams and Daniel Shanks, Strong primality tests that are not sufficient, Math. Comp., Vol. 39, No. 159 (1982), pp. 255-300.
- Kouèssi Norbert Adédji, Japhet Odjoumani, and Alain Togbé, Padovan and Perrin numbers as products of two generalized Lucas numbers, Archivum Mathematicum, Vol. 59 (2023), No. 4, 315-337.
- Bill Amend, "Foxtrot" cartoon, Oct 11, 2005 (Illustration of initial terms! From www.ucomics.com/foxtrot/.)
- Mohamadou Bachabi and Alain S. Togbé, Products of Fermat or Mersenne numbers in some sequences, Math. Comm. (2024) Vol. 29, 265-285.
- Herbert Batte, Taboka P. Chalebgwa and Mahadi Ddamulira, Perrin numbers that are concatenations of two distinct repdigits, arXiv:2105.08515 [math.NT], 2021.
- Daniel Birmajer, Juan B. Gil and Michael D. Weiner, Linear recurrence sequences with indices in arithmetic progression and their sums, arXiv:1505.06339 [math.NT], 2015.
- Eric Fernando Bravo, On concatenations of Padovan and Perrin numbers, Math. Commun. (2023) Vol 28, 105-119.
- Kevin S. Brown, Perrin's Sequence
- J. Chick, Problem 81G, Math. Gazette, Vol. 81, No. 491 (1997), p. 304.
- Tomislav Doslic and I. Zubac, Counting maximal matchings in linear polymers, Ars Mathematica Contemporanea, Vol. 11 (2016), pp. 255-276.
- Robert Dougherty-Bliss, The Meta-C-finite Ansatz, arXiv preprint arXiv:2206.14852 [math.CO], 2022.
- Robert Dougherty-Bliss, Experimental Methods in Number Theory and Combinatorics, Ph. D. Dissertation, Rutgers Univ. (2024). See p. 34.
- Robert Dougherty-Bliss and Doron Zeilberger, Lots and Lots of Perrin-Type Primality Tests and Their Pseudo-Primes, arXiv:2307.16069 [math.NT], 2023.
- E. B. Escott, Problem 151, Amer. Math. Monthly, Vol. 15, No. 11 (1908), p. 209.
- Daniel C. Fielder, Special integer sequences controlled by three parameters, Fibonacci Quarterly, Vol. 6 (1968), pp. 64-70.
- Daniel C. Fielder, Errata:Special integer sequences controlled by three parameters, Fibonacci Quarterly, Vol. 6 (1968), pp. 64-70.
- Zoltán Füredi, The number of maximal independent sets in connected graphs, J. Graph Theory, Vol. 11, No. 4 (1987), pp. 463-470.
- Bill Gasarch, When does n divide a_n in this sequence? (2016).
- A. Justin Gopinath and B. Nithya, Mathematical and Simulation Analysis of Contention Resolution Mechanism for IEEE 802.11 ah Networks, Computer Communications (2018) Vol. 124, 87-100.
- Christian Holzbaur, Perrin pseudoprimes [Original link broke many years ago. This is a cached copy from the WayBack machine, dated Apr 24 2006]
- Dmitry I. Ignatov, On the Maximal Independence Polynomial of the Covering Graph of the Hypercube up to n = 6, Int'l Conf. Formal Concept Analysis, 2023.
- Stanislav Jakubec and Karol Nemoga, On a conjecture concerning sequences of the third order, Mathematica Slovaca, Vol. 36, No. 1 (1986), pp. 85-89.
- Dov Jarden, Recurring Sequences, Riveon Lematematika, Jerusalem, 1966. [Annotated scanned copy] See p. 90.
- Bir Kafle, Salah Eddine Rihane and Alain Togbé, A note on Mersenne Padovan and Perrin numbers, Notes on Num. Theory and Disc. Math., Vol. 27, No. 1 (2021), pp. 161-170.
- Vedran Krcadinac, A new generalization of the golden ratio, Fibonacci Quart., Vol. 44, No. 4 (2006), pp. 335-340.
- G. C. Kurtz, Daniel Shanks and H. C. Williams, Fast primality tests for numbers less than 50*10^9, Mathematics of Computation, Vol. 46, No. 174 (1986), pp. 691-701. [Studies primes in this sequence. - _N. J. A. Sloane_, Jul 28 2019]
- I. E. Leonard and A. C. F. Liu, A familiar recurrence occurs again, Amer. Math. Monthly, Vol. 119, No. 4 (2012), 333-336.
- J. M. Luck and A. Mehta, Universality in survivor distributions: Characterising the winners of competitive dynamics, Physical Review E, Vol. 92, No. 5 (2015), 052810; arXiv preprint, arXiv:1511.04340 [q-bio.QM], 2015.
- Matthew Macauley, Jon McCammond and Henning S. Mortveit, Dynamics groups of asynchronous cellular automata, Journal of Algebraic Combinatorics, Vol 33, No 1 (2011), pp. 11-35.
- Gregory Minton, Three approaches to a sequence problem, Math. Mag., Vol. 84, No. 1 (2011), pp. 33-37.
- Gregory T. Minton, Linear recurrence sequences satisfying congruence conditions, Proc. Amer. Math. Soc., Vol. 142, No. 7 (2014), pp. 2337-2352. MR3195758.
- B. H. Neumann and L. G. Wilson, Some Sequences like Fibonacci's, Fibonacci Quart., Vol. 17, No. 1 (1979), p. 83.
- Mathilde Noual, Dynamics of Circuits and Intersecting Circuits, in Language and Automata Theory and Applications, Lecture Notes in Computer Science, 2012, Volume 7183/2012, 433-444, DOI; also on arXiv, arXiv 1011.3930 [cs.DM], 2010.
- Ahmet Öteleş, Bipartite Graphs Associated with Pell, Mersenne and Perrin Numbers, An. Şt. Univ. Ovidius Constantą, (2019) Vol. 27, Issue 2, 109-120.
- R. Perrin, Query 1484, L'Intermédiaire des Mathématiciens, Vol. 6 (1899), p. 76.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- Salah Eddine Rihane, Chèfiath Awero Adegbindin and Alain Togbé, Fermat Padovan And Perrin Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.6.2.
- Salah Eddine Rihane and Alain Togbé, Repdigits as products of consecutive Padovan or Perrin numbers, Arab. J. Math. (2021).
- David E. Rush, Degree n Relatives of the Golden Ratio and Resultants of the Corresponding Polynomials, Fibonacci Quart., Vol. 50, No. 4 (2012), pp. 313-325. See p. 318.
- J. O. Shallit and J. P. Yamron, On linear recurrences and divisibility by primes, Fibonacci Quart., Vol. 22, No. 4 (1984), p. 366.
- Yuksel Soykan, Vedat Irge, and Erkan Tasdemir, A Comprehensive Study of K-Circulant Matrices Derived from Generalized Padovan Numbers, Asian Journal of Probability and Statistics 26 (12):152-70, (2024). See p. 154.
- Ian Stewart, Tales of a Neglected Number, Mathematical Recreations, Scientific American, Vol. 274, No. 6 (1996), pp. 102-103.
- Ondrej Such, An Insufficient Condition for Primality, Problem 10268, Amer. Math. Monthly, Vol. 102, No. 6 (1995), pp. 557-558.
- Ondrej Such, An Insufficient Condition for Primality, Problem 10268, Amer. Math. Monthly, Vol. 103, No. 10 (1996), p. 911.
- Takatora Suzuki and Momoko Hayamizu, Which Phylogenetic Networks are Level-k Networks with Additional Arcs? Structure and Algorithms, arXiv:2505.11947 [math.CO], 2025.
- Pagdame Tiebekabe and Kouèssi Norbert Adédji, On Padovan or Perrin numbers as products of three repdigits in base delta, 2023.
- Razvan Tudoran, Problem 653, College Math. J., Vol. 31, No. 3 (2000), pp. 223-224.
- Vincent Vatter, Social distancing, primes, and Perrin numbers, Math Horiz., Vol. 29, No. 1, pp. 5-7.
- Stan Wagon, Letter to the Editor, Math. Mag., Vol. 84, No. 2 (2011), p. 119.
- Michel Waldschmidt, Lectures on Multiple Zeta Values, IMSC 2011.
- Eric Weisstein's World of Mathematics, Cycle Graph
- Eric Weisstein's World of Mathematics, Maximal Independent Edge Set
- Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set
- Eric Weisstein's World of Mathematics, Minimal Edge Cover.
- Eric Weisstein's World of Mathematics, Minimal Vertex Cover
- Eric Weisstein's World of Mathematics, Perrin Pseudoprime
- Eric Weisstein's World of Mathematics, Perrin Sequence
- Eric Weisstein's World of Mathematics, Sun Graph
- Eric Weisstein's World of Mathematics, Total Dominating Set
- Willem's Fibonacci site, Perrin and Fibonacci.
- Wikipedia, Perrin Number.
- Roman Witula and Damian Slota, Conjugate sequences in Fibonacci-Lucas sense and some identities for sums of powers of their elements, Integers, Vol. 7 (2007), #A08.
- Richard J. Yanco, Letter and Email to N. J. A. Sloane, 1994
- Richard Yanco and Ansuman Bagchi, K-th order maximal independent sets in path and cycle graphs, Unpublished manuscript, 1994. (Annotated scanned copy)
- Fatih Yilmaz and Durmus Bozkurt, Hessenberg matrices and the Pell and Perrin numbers, Journal of Number Theory, Volume 131, Issue 8 (August 2011), pp. 1390-1396. [The terms given in the paper contain a typo]
- Index entries for linear recurrences with constant coefficients, signature (0,1,1).
Crossrefs
Programs
-
GAP
a:=[3,0,2];; for n in [4..20] do a[n]:=a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Jul 12 2018
-
Haskell
a001608 n = a000931_list !! n a001608_list = 3 : 0 : 2 : zipWith (+) a001608_list (tail a001608_list) -- Reinhard Zumkeller, Feb 10 2011
-
Magma
I:=[3,0,2]; [n le 3 select I[n] else Self(n-2) +Self(n-3): n in [1..50]]; // G. C. Greubel, Mar 18 2019
-
Maple
A001608 :=proc(n) option remember; if n=0 then 3 elif n=1 then 0 elif n=2 then 2 else procname(n-2)+procname(n-3); fi; end proc; [seq(A001608(n),n=0..50)]; # N. J. A. Sloane, May 24 2013
-
Mathematica
LinearRecurrence[{0, 1, 1}, {3, 0, 2}, 50] (* Harvey P. Dale, Jun 26 2011 *) per = Solve[x^3 - x - 1 == 0, x]; f[n_] := Floor @ Re[N[ per[[1, -1, -1]]^n + per[[2, -1, -1]]^n + per[[3, -1, -1]]^n]]; Array[f, 46, 0] (* Robert G. Wilson v, Jun 29 2010 *) a[n_] := n*Sum[Binomial[k, n-2*k]/k, {k, 1, n/2}]; a[0]=3; Table[a[n] , {n, 0, 45}] (* Jean-François Alcover, Oct 04 2012, after Vladimir Kruchinin *) CoefficientList[Series[(3 - x^2)/(1 - x^2 - x^3), {x, 0, 50}], x] (* Vincenzo Librandi, Jun 03 2015 *) Table[RootSum[-1 - # + #^3 &, #^n &], {n, 0, 20}] (* Eric W. Weisstein, Mar 30 2017 *) RootSum[-1 - # + #^3 &, #^Range[0, 20] &] (* Eric W. Weisstein, Dec 30 2017 *)
-
PARI
a(n)=if(n<0,0,polsym(x^3-x-1,n)[n+1])
-
PARI
A001608_list(n) = polsym(x^3-x-1,n) \\ Joerg Arndt, Mar 10 2019
-
Python
A001608_list, a, b, c = [3, 0, 2], 3, 0, 2 for _ in range(100): a, b, c = b, c, a+b A001608_list.append(c) # Chai Wah Wu, Jan 27 2015
-
Sage
((3-x^2)/(1-x^2-x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Mar 18 2019
Formula
G.f.: (3 - x^2)/(1 - x^2 - x^3). - Simon Plouffe in his 1992 dissertation
a(n) = r1^n + r2^n + r3^n where r1, r2, r3 are three roots of x^3-x-1=0.
a(n-1) + a(n) + a(n+1) = a(n+4), a(n) - a(n-1) = a(n-5). - Jon Perry, Jun 05 2003
From Gary W. Adamson, Feb 01 2004: (Start)
a(n) = trace(M^n) where M is the 3 X 3 matrix [0 1 0 / 0 0 1 / 1 1 0], the companion matrix of the characteristic polynomial of this sequence, P = X^3 - X - 1.
M^n * [3, 0, 2] = [a(n), a(n+1), a(n+2)]; e.g., M^7 * [3, 0, 2] = [7, 10, 12].
a(n) = 3*p(n) - p(n-2) = 2*p(n) + p(n-3), with p(n) := A000931(n+3), n >= 0. - Wolfdieter Lang, Jun 21 2010
From Francesco Daddi, Aug 03 2011: (Start)
a(0) + a(1) + a(2) + ... + a(n) = a(n+5) - 2.
a(0) + a(2) + a(4) + ... + a(2*n) = a(2*n+3).
a(1) + a(3) + a(5) + ... + a(2*n+1) = a(2*n+4) - 2. (End)
From Francesco Daddi, Aug 04 2011: (Start)
a(0) + a(3) + a(6) + a(9) + ... + a(3*n) = a(3*n+2) + 1.
a(0) + a(5) + a(10) + a(15) + ... + a(5*n) = a(5*n+1)+3.
a(0) + a(7) + a(14) + a(21) + ... + a(7*n) = (a(7*n) + a(7*n+1) + 3)/2. (End)
a(n) = n*Sum_{k=1..floor(n/2)} binomial(k,n-2*k)/k, n > 0, a(0)=3. - Vladimir Kruchinin, Oct 21 2011
(a(n)^3)/2 + a(3n) - 3*a(n)*a(2n)/2 - 3 = 0. - Richard Turk, Apr 26 2017
2*a(4n) - 2*a(n) - 2*a(n)*a(3n) - a(2n)^2 + a(n)^2*a(2n) = 0. - Richard Turk, May 02 2017
a(n)^4 + 6*a(4n) - 4*a(3n)*a(n) - 3*a(2n)^2 - 12a(n) = 0. - Richard Turk, May 02 2017
a(n+5)^2 + a(n+1)^2 - a(n)^2 = a(2*(n+5)) + a(2*(n+1)) - a(2*n). - Aleksander Bosek, Mar 04 2019
From Aleksander Bosek, Mar 18 2019: (Start)
a(n+12) = a(n) + 2*a(n+4) + a(n+11);
a(n+16) = a(n) + 4*a(n+9) + a(n+13);
a(n+18) = a(n) + 2*a(n+6) + 5*a(n+12);
a(n+21) = a(n) + 2*a(n+12) + 6*a(n+14);
a(n+27) = a(n) + 3*a(n+9) + 4*a(n+22). (End)
a(n) = Sum_{j=0..floor((n-g)/(2*g))} 2*n/(n-2*(g-2)*j-(g-2)) * Hypergeometric2F1([-(n-2g*j-g)/2, -(2j+1)], [1], 1), g = 3 and n an odd integer. - Richard Turk, Oct 14 2019
E.g.f.: exp(r1*x) + exp(r2*x) + exp(r3*x), where r1, r2, r3 are three roots of x^3 - x - 1 = 0. - Fabian Pereyra, Nov 02 2024
Extensions
Additional comments from Mike Baker, Oct 11 2005
Definition edited by Chai Wah Wu, Jan 27 2015
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021
Comments