cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 85 results. Next

A127214 a(n) = 2^n*tribonacci(n) or (2^n)*A001644(n+1).

Original entry on oeis.org

2, 12, 56, 176, 672, 2496, 9088, 33536, 123392, 453632, 1669120, 6139904, 22585344, 83083264, 305627136, 1124270080, 4135714816, 15213527040, 55964073984, 205867974656, 757300461568, 2785785413632, 10247716470784, 37696978288640, 138671105769472
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[2,12,56]; [n le 3 select I[n] else 2*Self(n-1) + 4*Self(n-2) + 8*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 18 2017
  • Mathematica
    Table[Tr[MatrixPower[2*{{1, 1, 1}, {1, 0, 0}, {0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{2, 4, 8}, {2, 12, 56}, 50] (* G. C. Greubel, Dec 18 2017 *)
  • PARI
    x='x+O('x^30); Vec(-2*x*(12*x^2+4*x+1)/(8*x^3+4*x^2+2*x-1)) \\ G. C. Greubel, Dec 18 2017
    

Formula

a(n) = Trace of matrix [({2,2,2},{2,0,0},{0,2,0})^n].
a(n) = 2^n * Trace of matrix [({1,1,1},{1,0,0},{0,1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 2*a(n-1) + 4*a(n-2) + 8*a(n-3).
G.f.: -2*x*(12*x^2+4*x+1)/(8*x^3+4*x^2+2*x-1). (End)

Extensions

More terms from Colin Barker, Sep 02 2013

A104576 Indices of primes in A001644 (the Lucas 3-step numbers).

Original entry on oeis.org

2, 3, 4, 7, 8, 9, 10, 12, 20, 30, 33, 66, 76, 77, 82, 87, 98, 180, 205, 360, 553, 719, 766, 1390, 1879, 1999, 4033, 5620, 16506, 17436, 23676, 24428, 27758, 31932, 58199, 67661, 85040, 102023, 185595
Offset: 1

Views

Author

T. D. Noe, Mar 16 2005

Keywords

Comments

The sequence of generalized tribonacci numbers is defined as beginning with 1, 3, 7. Subsequent terms are the sum of the previous three terms. Note that the sequence of these generalized tribonacci numbers has many more primes than the tribonacci sequence A000073 (whose prime indices are in A092835).
a(40) > 2*10^5. - Robert Price, Dec 24 2013

Crossrefs

Cf. A104577 (indices of prime generalized tetranacci numbers).

Formula

A001644(a(n)) = A105762(n). - Arthur O'Dwyer, Jul 26 2024

Extensions

a(37)-a(39) from Robert Price, Dec 24 2013
Name clarified by Arthur O'Dwyer, Jul 25 2024

A127215 a(n) = 3^n*tribonacci(n) or (3^n)*A001644(n+1).

Original entry on oeis.org

3, 27, 189, 891, 5103, 28431, 155277, 859491, 4743603, 26158707, 144374805, 796630059, 4395548511, 24254435799, 133832255589, 738466498755, 4074759563139, 22483948079115, 124063275771981, 684563868232731, 3777327684782127, 20842766314284447
Offset: 1

Views

Author

Artur Jasinski, Jan 09 2007

Keywords

Crossrefs

Programs

  • Magma
    I:=[3,27,189]; [n le 3 select I[n] else 3*Self(n-1) + 9*Self(n-2) + 27*Self(n-3): n in [1..30]]; // G. C. Greubel, Dec 18 2017
  • Mathematica
    Table[Tr[MatrixPower[3*{{1, 1, 1}, {1, 0, 0}, {0, 1, 0}}, x]], {x, 1, 20}]
    LinearRecurrence[{3, 9, 27}, {3, 27, 189}, 50] (* G. C. Greubel, Dec 18 2017 *)
  • PARI
    x='x+O('x^30); Vec(-3*x*(27*x^2+6*x+1)/(27*x^3+9*x^2+3*x-1)) \\ G. C. Greubel, Dec 18 2017
    

Formula

a(n) = Trace of matrix [({3,3,3},{3,0,0},{0,3,0})^n].
a(n) = 3^n * Trace of matrix [({1,1,1},{1,0,0},{0,1,0})^n].
From Colin Barker, Sep 02 2013: (Start)
a(n) = 3*a(n-1) + 9*a(n-2) + 27*a(n-3).
G.f.: -3*x*(27*x^2+6*x+1)/(27*x^3+9*x^2+3*x-1). (End)

Extensions

More terms from Colin Barker, Sep 02 2013

A106293 Period of the Lucas 3-step sequence A001644 mod n.

Original entry on oeis.org

1, 1, 13, 4, 31, 13, 48, 8, 39, 31, 10, 52, 168, 48, 403, 16, 96, 39, 360, 124, 624, 10, 553, 104, 155, 168, 117, 48, 140, 403, 331, 32, 130, 96, 1488, 156, 469, 360, 2184, 248, 560, 624, 308, 20, 1209, 553, 46, 208, 336, 155, 1248, 168, 52, 117, 310, 48, 4680, 140
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This sequence can differ from the corresponding Fibonacci sequence (A046738) only when n is a multiple of 2 or 11 because the discriminant of the characteristic polynomial x^3-x^2-x-1 is -44. [Clarified by Avery Diep, Aug 22 2025]
a(n) divides A046738(n). - Avery Diep, Aug 22 2025

Crossrefs

Cf. A046738 (period of Fibonacci 3-step sequence mod n), A106273 (discriminant of the polynomial x^n-x^(n-1)-...-x-1).

Programs

  • Mathematica
    n=3; Table[p=i; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 60}]

Formula

Let the prime factorization of n be p1^e1...pk^ek. Then a(n) = lcm(a(p1^e1), ..., a(pk^ek)).

A106299 Primes that do not divide any term of the Lucas 3-step sequence A001644.

Original entry on oeis.org

2, 103, 199, 211, 421, 757, 883, 907, 991, 1021, 1123, 1237, 1543, 1567, 1621, 1699, 1753, 1873, 2113, 2539, 2731, 2797, 2803, 3391, 3433, 3463, 3499, 3613, 3631, 3793, 3853, 3919, 4093, 4591, 4723, 4933, 4951, 4987, 5107, 5179, 5527, 5791, 5839, 6073
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

If a prime p divides a term a(k) of this sequence, then k must be less than the period of the sequence mod p. Hence these primes are found by computing A001644(k) mod p for increasing k and stopping when either A001644(k) mod p = 0 or the end of the period is reached. Interestingly, for all of these primes except 211, the period of the sequence A001644(k) mod p is (p-1)/d, where d is a small integer. The only other exceptional primes less than 1000000 are 23977 and 47093.

Crossrefs

Cf. A053028 (primes not dividing any Lucas number), A106300 (primes not dividing any Lucas 4-step number), A106301 (primes not dividing any Lucas 5-step number).

Programs

  • Mathematica
    n=3; lst={}; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; While[s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; !(a==a0 || s==0)]; If[s>0, AppendTo[lst, p]], {i, 1000}]; lst

A074678 a(n) = Sum_{j=0..floor(n/2)} (-1)^(j+floor(n/2))*S(2j+q), where S(n) are generalized tribonacci numbers (A001644) and q = (1-(-1)^n)/2.

Original entry on oeis.org

3, 1, 0, 6, 11, 15, 28, 56, 103, 185, 340, 630, 1159, 2127, 3912, 7200, 13243, 24353, 44792, 82390, 151539, 278719, 512644, 942904, 1734271, 3189817, 5866988, 10791078, 19847887, 36505951, 67144912, 123498752, 227149619, 417793281
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 30 2002

Keywords

Comments

a(n) is the convolution of S(n) with the sequence (1,0,-1,0,1,0,-1,0,....) A056594.

Crossrefs

Programs

  • GAP
    a:=[3,1,0,6,11];; for n in [6..40] do a[n]:=a[n-1]+2*a[n-3]+a[n-4] +a[n-5]; od; a; # G. C. Greubel, Apr 02 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (3-2*x-x^2)/(1-x-2*x^3-x^4-x^5) )); // G. C. Greubel, Apr 02 2019
    
  • Mathematica
    CoefficientList[Series[(3-2*x-x^2)/(1-x-2*x^3-x^4-x^5), {x, 0, 40}], x]
    LinearRecurrence[{1,0,2,1,1}, {3,1,0,6,11}, 40] (* G. C. Greubel, Apr 02 2019 *)
  • PARI
    my(x='x+O('x^40)); Vec((3-2*x-x^2)/(1-x-2*x^3-x^4-x^5)) \\ G. C. Greubel, Apr 02 2019
    
  • Sage
    ((3-2*x-x^2)/(1-x-2*x^3-x^4-x^5)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 02 2019
    

Formula

a(n) = Sum_{j=0..floor(n/2)} (-1)^(j+floor(n/2))*S(2j+q), where S(n) are generalized tribonacci numbers (A001644) and q = (1-(-1)^n)/2.
a(n) = a(n-1) + 2*a(n-3) + a(n-4) + a(n-5), a(0)=3, a(1)=1, a(2)=0, a(3)=6, a(4)=11.
G.f.: (3 - 2*x - x^2)/(1 - x - 2*x^3 - x^4 - x^5).

A075298 Inverted (definition in A075193) generalized tribonacci numbers A001644.

Original entry on oeis.org

1, 1, -5, 5, 1, -11, 15, -3, -23, 41, -21, -43, 105, -83, -65, 253, -271, -47, 571, -795, 177, 1189, -2161, 1149, 2201, -5511, 4459, 3253, -13223, 14429, 2047, -29699, 42081, -10335, -61445, 113861, -62751, -112555, 289167, -239363, -162359, 690889, -767893, -85355, 1544137, -2226675, 597183, 3173629
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Sep 13 2002

Keywords

Comments

a(n) = -C(n+1), C(n)=reflected generalized tribonacci numbers A073145.

Crossrefs

Programs

  • GAP
    a:=[1,1,-5];; for n in [4..50] do a[n]:=-a[n-1]-a[n-2]+a[n-3]; od; a; # G. C. Greubel, Apr 09 2019
  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1+2*x-3*x^2)/(1+x+x^2-x^3) )); // G. C. Greubel, Apr 09 2019
    
  • Mathematica
    CoefficientList[Series[(1+2x-3x^2)/(1+x+x^2-x^3), {x, 0, 50}], x]
  • PARI
    my(x='x+O('x^50)); Vec((1+2*x-3*x^2)/(1+x+x^2-x^3)) \\ G. C. Greubel, Apr 09 2019
    
  • Sage
    ((1+2*x-3*x^2)/(1+x+x^2-x^3)).series(x, 50).coefficients(x, sparse=False) # G. C. Greubel, Apr 09 2019
    

Formula

a(n) = -a(n-1) - a(n-2) + a(n-3), a(0)=1, a(1)=1, a(2)=-5.
G.f.: (1+2*x-3*x^2)/(1+x+x^2-x^3).
a(n) = A078046(n) + 3*A078046(n-1). - R. J. Mathar, Sep 20 2020

A106294 Period of the Lucas 3-step sequence A001644 mod prime(n).

Original entry on oeis.org

1, 13, 31, 48, 10, 168, 96, 360, 553, 140, 331, 469, 560, 308, 46, 52, 3541, 1860, 1519, 5113, 5328, 3120, 287, 8011, 3169, 680, 51, 1272, 990, 12883, 5376, 5720, 18907, 3864, 7400, 2850, 8269, 162, 9296, 2494, 32221, 10981, 36673, 4656, 3234, 198, 5565
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This sequence differs from the corresponding Fibonacci sequence (A106302) at n=1 and 5 because these correspond to the primes 2 and 11, which are the prime factors of -44, the discriminant of the characteristic polynomial x^3-x^2-x-1. We have a(n) < prime(n) for the primes 2, 11 and A106279.
For a prime p, the period depends on the zeros of x^3-x^2-x-1 mod p. If there are 3 zeros, then the period is < p. If there are no zeros, then the period is p^2+p+1 or a simple fraction of p^2+p+1. Also note that the period can be prime, as for p=3, 5, 31, 59, 71, 89, 97, 157, 223. When the period is prime, the orbits have a simple structure. [From T. D. Noe, Sep 18 2008]

Crossrefs

Programs

  • Mathematica
    n=3; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 60}]

Formula

a(n) = A106293(prime(n)).

A073446 Product L(n)*S(n), where L(n) are Lucas numbers and S(n) are Lucas 3-step numbers = A000032(n) * A001644(n).

Original entry on oeis.org

6, 1, 9, 28, 77, 231, 702, 2059, 6157, 18316, 54489, 162185, 482678, 1436397, 4274853, 12722028, 37861085, 112675763, 335326230, 997940307, 2969899037, 8838503884, 26303639349, 78280380217, 232964641030, 693309407681
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 01 2002

Keywords

Comments

a(n) is also the trace of the matrix R^n, where R is the Kronecker product of the Fibonacci matrix (Fibomatrix): first row (1,1), second row (1,0), times the Tribomatrix: first row (1,1,0), second row (1,0,1), third row (1,0,0).
a(n) is semiprime iff n is an element of A001606 (an index of a prime Lucas number) and an element of A104576 (an index of a prime Lucas 3-step number). The only known such are n = 2, 4, 7, 8 (through 67661). - Jonathan Vos Post, May 10 2005

References

  • Thomas Koshy, "Fibonacci and Lucas Numbers with Applications", John Wiley and Sons, 2001.

Crossrefs

Programs

  • GAP
    a:=[6,1,9,28,77,231];; for n in [7..40] do a[n]:=a[n-1]+4*a[n-2] +5*a[n-3]+2*a[n-4]-a[n-5]+a[n-6]; od; a; # G. C. Greubel, Feb 19 2019
  • Magma
    m:=40; R:=PowerSeriesRing(Integers(), m); Coefficients(R!( (6-5*x-16*x^2-15*x^3-4*x^4+x^5)/(1-x-4*x^2-5*x^3-2*x^4+x^5-x^6) )); // G. C. Greubel, Feb 19 2019
    
  • Mathematica
    CoefficientList[Series[(6-5x-16x^2-15x^3-4x^4+x^5)/(1-x-4x^2-5x^3-2x^4 +x^5-x^6), {x, 0, 50}], x]
  • PARI
    my(x='x+O('x^40)); Vec((6-5*x-16*x^2-15*x^3-4*x^4+x^5)/(1-x-4*x^2-5*x^3-2*x^4+x^5-x^6)) \\ G. C. Greubel, Feb 19 2019
    
  • Sage
    ((6-5*x-16*x^2-15*x^3-4*x^4+x^5)/(1-x-4*x^2-5*x^3-2*x^4+x^5-x^6)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Feb 19 2019
    

Formula

a(n) = a(n-1)+4*a(n-2)+5*a(n-3)+2*a(n-4)-a(n-5)+a(n-6), a(0)=6, a(1)=1, a(2)=9, a(3)=28, a(4)=77, a(5)=231.
G.f.: (6-5*x-16*x^2-15*x^3-4*x^4+x^5)/(1-x-4*x^2-5*x^3-2*x^4+x^5-x^6).

A073728 a(n) = Sum_{k=0..n} S(k), where S(n) are the tribonacci generalized numbers A001644.

Original entry on oeis.org

3, 4, 7, 14, 25, 46, 85, 156, 287, 528, 971, 1786, 3285, 6042, 11113, 20440, 37595, 69148, 127183, 233926, 430257, 791366, 1455549, 2677172, 4924087, 9056808, 16658067, 30638962, 56353837, 103650866, 190643665, 350648368, 644942899
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 06 2002

Keywords

Crossrefs

Partial sums of A001644.
Cf. A000073.

Programs

  • Magma
    I:=[3,4,7]; [n le 3 select I[n] else Self(n-1)+Self(n-2) +Self(n-3): n in [1..40]]; // Vincenzo Librandi, Mar 27 2015
    
  • Maple
    A:= gfun[rectoproc]({a(n)=a(n-1)+a(n-2)+a(n-3), a(0)=3, a(1)=4, a(2)=7},a(n),remember):
    seq(A(n),n=0..100); # Robert Israel, Mar 26 2015
  • Mathematica
    CoefficientList[Series[(3+x)/(1-x-x^2-x^3), {x, 0, 40}], x]
  • PARI
    my(x='x+O('x^40)); Vec((3+x)/(1-x-x^2-x^3)) \\ G. C. Greubel, Apr 09 2019
    
  • Sage
    ((3+x)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Apr 09 2019

Formula

a(n) = a(n-1) + a(n-2) + a(n-3), a(0)=3, a(1)=4, a(2)=7.
G.f.: (3+x)/(1-x-x^2-x^3).
a(n) = 3*T(n+1) + T(n), where T(n) are the tribonacci numbers A000073.
a(n) = (S(n+3) - S(n+1))/2, where S(n) = A001644(n). - Michael D. Weiner, Mar 27 2015
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(-r^2+r+2). - Fabian Pereyra, Nov 21 2024
Showing 1-10 of 85 results. Next