cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A000213 Tribonacci numbers: a(n) = a(n-1) + a(n-2) + a(n-3) with a(0)=a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 1, 3, 5, 9, 17, 31, 57, 105, 193, 355, 653, 1201, 2209, 4063, 7473, 13745, 25281, 46499, 85525, 157305, 289329, 532159, 978793, 1800281, 3311233, 6090307, 11201821, 20603361, 37895489, 69700671, 128199521, 235795681, 433695873, 797691075, 1467182629
Offset: 0

Views

Author

Keywords

Comments

The name "tribonacci number" is less well-defined than "Fibonacci number". The sequence A000073 (which begins 0, 0, 1) is probably the most important version, but the name has also been applied to A000213, A001590, and A081172. - N. J. A. Sloane, Jul 25 2024
Number of (n-1)-bit binary sequences with each one adjacent to a zero. - R. H. Hardin, Dec 24 2007
The binomial transform is A099216. The inverse binomial transform is (-1)^n*A124395(n). - R. J. Mathar, Aug 19 2008
Equals INVERT transform of (1, 0, 2, 0, 2, 0, 2, ...). a(6) = 17 = (1, 1, 1, 3, 5, 9) dot (0, 2, 0, 2, 0, 1) = (0 + 2 + 0 + 6 + 0 + 9) = 17. - Gary W. Adamson, Apr 27 2009
From John M. Campbell, May 16 2011: (Start)
Equals the number of tilings of a 2 X n grid using singletons and "S-shaped tetrominoes" (i.e., shapes of the form Polygon[{{0, 0}, {2, 0}, {2, 1}, {3, 1}, {3, 2}, {1, 2}, {1, 1}, {0, 1}}]).
Also equals the number of tilings of a 2 X n grid using singletons and "T-shaped tetrominoes" (i.e., shapes of the form Polygon[{{0, 0}, {3, 0}, {3, 1}, {2, 1}, {2, 2}, {1, 2}, {1, 1}, {0, 1}}]). (End)
Pisano period lengths: 1, 1, 13, 4, 31, 13, 48, 8, 39, 31, 110, 52, 168, 48, 403, 16, 96, 39, 360, 124, ... (differs from A106293). - R. J. Mathar, Aug 10 2012
a(n) is the number of compositions of n with no consecutive 1's. a(4) = 5 because we have: 4, 3+1, 1+3, 2+2, 1+2+1. Cf. A239791, A003242. - Geoffrey Critzer, Mar 27 2014
a(n+2) is the number of words of length n over alphabet {1,2,3} without having {11,12,22,23} as substrings. - Ran Pan, Sep 16 2015
Satisfies Benford's law [see A186190]. - N. J. A. Sloane, Feb 09 2017
a(n) is also the number of dominating sets on the (n-1)-path graph. - Eric W. Weisstein, Mar 31 2017
a(n) is also the number of maximal irredundant sets and minimal dominating sets in the (2n-3)-triangular snake graph. - Eric W. Weisstein, Jun 09 2019
a(n) is also the number of anti-palindromic compositions of n, where a composition (c(1), c(2),..., c(k)) is anti-palindromic if c(i) is not equal to c(k+1-i) whenever 1 <= i <= k/2. For instance, there are a(4) = 5 anti-palindromic compositions of 4: 4, 31, 13, 211, 112. - Jia Huang, Apr 08 2023

Examples

			G.f. = 1 + x + x^2 + 3*x^3 + 5*x^4 + 9*x^5+ 17*x^6 + 31*x^7 + 57*x^8 + ...
		

References

  • Kenneth Edwards, Michael A. Allen, A new combinatorial interpretation of the Fibonacci numbers squared, Part II, Fib. Q., 58:2 (2020), 169-177.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • GAP
    a:=[1,1,1];; for n in [4..45] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # G. C. Greubel, Jun 09 2019
    
  • Haskell
    a000213 n = a000213_list !! n
    a000213_list = 1 : 1 : 1 : zipWith (+) a000213_list
       (tail $ zipWith (+) a000213_list (tail a000213_list))
    -- Reinhard Zumkeller, Apr 07 2012
    
  • Magma
    I:=[1,1,1]; [n le 3 select I[n] else Self(n-1) + Self(n-2) + Self(n-3): n in [1..45]]; // G. C. Greubel, Jun 09 2019
    
  • Maple
    K:=(1-z^2)/(1-z-z^2-z^3): Kser:=series(K, z=0, 45): seq((coeff(Kser, z, n)), n= 0..34); # Zerinvary Lajos, Nov 08 2007
    A000213:=(z-1)*(1+z)/(-1+z+z**2+z**3); # Simon Plouffe in his 1992 dissertation
  • Mathematica
    LinearRecurrence[{1, 1, 1}, {1, 1, 1}, 45] (* Harvey P. Dale, May 23 2011 *)
    Table[RootSum[-1 - # - #^2 + #^3 &, 2 #^n - 4 #^(n + 1) + 3 #^(n + 2) &]/11, {n, 0, 45}] (* Eric W. Weisstein, Apr 10 2018 *)
    CoefficientList[Series[(1-x)(1+x)/(1-x-x^2-x^3), {x, 0, 45}], x] (* Eric W. Weisstein, Apr 10 2018 *)
  • Maxima
    a(n):=sum(sum(binomial(n-2*m+1,m-i)*binomial(n-2*m+i,n-2*m), i,0,m),m,0,(n)/2); /* Vladimir Kruchinin, Dec 17 2011 */
    
  • PARI
    a(n)=tn=[1,1,1;1,0,0;0,1,0]^n;tn[3,1]+tn[3,2]+tn[3,3] \\ Charles R Greathouse IV, Feb 18 2011
    
  • Python
    alst = [1, 1, 1]
    [alst.append(alst[n-1] + alst[n-2] + alst[n-3]) for n in range(3, 37)]
    print(alst) # Michael S. Branicky, Sep 21 2021
  • Sage
    ((1-x^2)/(1-x-x^2-x^3)).series(x, 45).coefficients(x, sparse=False) # G. C. Greubel, Jun 09 2019
    

Formula

G.f.: (1-x)*(1+x)/(1-x-x^2-x^3). - Ralf Stephan, Feb 11 2004
G.f.: 1 / (1 - x / (1 - 2*x^2 / (1 + x^2))). - Michael Somos, May 12 2012
a(n) = rightmost term of M^n * [1 1 1], where M is the 3 X 3 matrix [1 1 1 / 1 0 0 / 0 1 0]. M^n * [1 1 1] = [a(n+2) a(n+1) a(n)]. a(n)/a(n-1) tends to the tribonacci constant, 1.839286755...; an eigenvalue of M and a root of x^3 - x^2 - x - 1 = 0. - Gary W. Adamson, Dec 17 2004
a(n) = A001590(n+3) - A001590(n+2); a(n+1) - a(n) = 2*A000073(n); a(n) = A000073(n+3) - A000073(n+1). - Reinhard Zumkeller, May 22 2006
a(n) = A001590(n) + A001590(n+1). - Philippe Deléham, Sep 25 2006
a(n) ~ (F - 1) * T^n, where F = A086254 and T = A058265. - Charles R Greathouse IV, Nov 09 2008
a(n) = 2*a(n-1) - a(n-4), n > 3. - Gary Detlefs, Sep 13 2010
a(n) = Sum_{m=0..n/2} Sum_{i=0..m} binomial(n-2*m+1,m-i)*binomial(n-2*m+i, n-2*m). - Vladimir Kruchinin, Dec 17 2011
a(n) = 2*A008937(n-2) + 1 for n > 1. - Reinhard Zumkeller, Apr 07 2012
G.f.: 1+x/(U(0) - x) where U(k) = 1 - x^2/(1 - 1/(1 + 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 16 2012
G.f.: 1 + x + x^2/(G(0)-x) where G(k) = 1 - x*(2*k+1)/(1 - 1/(1 + (2*k+1)/G(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Nov 17 2012
G.f.: (1+x)*(1-x)*(1 + x*(G(0)-1)/(x+1)) where G(k) = 1 + (1+x+x^2)/(1-x/(x+1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Jan 26 2013
G.f.: 1/(1+x-G(0)), where G(k) = 1 - 1/(1 - x/(x - 1/(1 + 1/(1 - x/(x + 1/G(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, Jun 20 2013
a(n) = (-1)^n * A180735(-1-n) for all n in Z. - Michael Somos, Aug 15 2015
a(n) = Sum_{r root of x^3-x^2-x-1} r^n/(-r^2+2*r+2). - Fabian Pereyra, Nov 21 2024

A001644 a(n) = a(n-1) + a(n-2) + a(n-3), a(0)=3, a(1)=1, a(2)=3.

Original entry on oeis.org

3, 1, 3, 7, 11, 21, 39, 71, 131, 241, 443, 815, 1499, 2757, 5071, 9327, 17155, 31553, 58035, 106743, 196331, 361109, 664183, 1221623, 2246915, 4132721, 7601259, 13980895, 25714875, 47297029, 86992799, 160004703, 294294531, 541292033, 995591267, 1831177831
Offset: 0

Views

Author

Keywords

Comments

For n >= 3, a(n) is the number of cyclic sequences consisting of n zeros and ones that do not contain three consecutive ones provided the positions of the zeros and ones are fixed on a circle. This is proved in Charalambides (1991) and Zhang and Hadjicostas (2015). For example, a(3)=7 because only the sequences 110, 101, 011, 001, 010, 100 and 000 avoid three consecutive ones. (For n=1,2 the statement is still true provided we allow the sequence to wrap around itself on a circle.) - Petros Hadjicostas, Dec 16 2016
For n >= 3, also the number of dominating sets on the n-cycle graph C_n. - Eric W. Weisstein, Mar 30 2017
For n >= 3, also the number of minimal dominating sets and maximal irredundant sets on the n-sun graph. - Eric W. Weisstein, Jul 28 and Aug 17 2017
For n >= 3, also the number of minimal edge covers in the n-web graph. - Eric W. Weisstein, Aug 03 2017
For n >= 1, also the number of ways to tile a bracelet of length n with squares, dominoes, and trominoes. - Ruijia Li and Greg Dresden, Sep 14 2019
If n is prime, then a(n)-1 is a multiple of n ; a counterexample for the converse is given by n = 182. - Robert FERREOL, Apr 03 2024

Examples

			G.f. = 3 + x + 3*x^2 + 7*x^3 + 11*x^4 + 21*x^5 + 39*x^6 + 71*x^7 + 131*x^8 + ...
		

References

  • Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 500.
  • G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000073, A073145, A106293 (Pisano periods), A073728 (partial sums).
Cf. A058265.

Programs

  • GAP
    a:=[3,1,3];; for n in [4..40] do a[n]:=a[n-1]+a[n-2]+a[n-3]; od; a; # Muniru A Asiru, Dec 18 2018
    
  • Haskell
    a001644 n = a001644_list !! n
    a001644_list = 3 : 1 : 3 : zipWith3 (((+) .) . (+))
                   a001644_list (tail a001644_list) (drop 2 a001644_list)
    -- Reinhard Zumkeller, Apr 13 2014
    
  • Magma
    I:=[3,1,3]; [n le 3 select I[n] else Self(n-1)+Self(n-2)+ Self(n-3): n in [1..40]]; // Vincenzo Librandi, Aug 04 2017
    
  • Maple
    A001644:=-(1+2*z+3*z**2)/(z**3+z**2+z-1); # Simon Plouffe in his 1992 dissertation; gives sequence except for the initial 3
    A001644 :=proc(n)
        option remember;
        if n <= 2 then
            1+2*modp(n+1,2)
        else
            procname(n-1)+procname(n-2)+procname(n-3);
        end if;
    end proc:
    seq(A001644(n),n=0..80) ;
  • Mathematica
    a[x_]:= a[x] = a[x-1] +a[x-2] +a[x-3]; a[0] = 3; a[1] = 1; a[2] = 3; Array[a, 40, 0]
    a[n_]:= n*Sum[Sum[Binomial[j, n-3*k+2*j]*Binomial[k, j], {j,n-3*k,k}]/k, {k, n}]; a[0] = 3; Array[a, 40, 0] (* Robert G. Wilson v, Feb 24 2011 *)
    LinearRecurrence[{1, 1, 1}, {3, 1, 3}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 08 2012 *)
    Table[RootSum[-1 - # - #^2 + #^3 &, #^n &], {n, 0, 40}] (* Eric W. Weisstein, Mar 30 2017 *)
    RootSum[-1 - # - #^2 + #^3 &, #^Range[0, 40] &] (* Eric W. Weisstein, Aug 17 2017 *)
  • PARI
    {a(n) = if( n<0, polsym(1 - x - x^2 - x^3, -n)[-n+1], polsym(1 + x + x^2 - x^3, n)[n+1])}; /* Michael Somos, Nov 02 2002 */
    
  • PARI
    my(x='x+O('x^40)); Vec((3-2*x-x^2)/(1-x-x^2-x^3)) \\ Altug Alkan, Apr 19 2018
    
  • SageMath
    ((3-2*x-x^2)/(1-x-x^2-x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, Mar 22 2019

Formula

Binet's formula: a(n) = r1^n + r2^n + r3^n, where r1, r2, r3 are the roots of the characteristic polynomial 1 + x + x^2 - x^3, see A058265.
a(n) = A000073(n) + 2*A000073(n-1) + 3*A000073(n-2).
G.f.: (3-2*x-x^2)/(1-x-x^2-x^3). - Miklos Kristof, Jul 29 2002
a(n) = n*Sum_{k=1..n} Sum_{j=n-3*k..k} binomial(j, n-3*k+2*j)*binomial(k,j)/k, n > 0, a(0)=3. - Vladimir Kruchinin, Feb 24 2011
a(n) = a(n-1) + a(n-2) + a(n-3), a(0)=3, a(1)=1, a(2)=3. - Harvey P. Dale, Feb 01 2015
a(n) = A073145(-n). for all n in Z. - Michael Somos, Dec 17 2016
Sum_{k=0..n} k*a(k) = (n*a(n+3) - a(n+2) - (n+1)*a(n+1) + 4)/2. - Yichen Wang, Aug 30 2020
a(n) = Trace(M^n), where M = [0, 0, 1; 1, 0, 1; 0, 1, 1] is the companion matrix to the monic polynomial x^3 - x^2 - x - 1. It follows that the sequence satisfies the Gauss congruences: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. - Peter Bala, Dec 29 2022

Extensions

Edited by Mario Catalani (mario.catalani(AT)unito.it), Jul 17 2002
Deleted certain dangerous or potentially dangerous links. - N. J. A. Sloane, Jan 30 2021

A106276 Number of distinct zeros of x^3-x^2-x-1 mod prime(n).

Original entry on oeis.org

1, 0, 0, 1, 2, 1, 1, 1, 0, 1, 0, 0, 1, 1, 3, 3, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 3, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 3, 1, 1, 0, 0, 0, 1, 1, 3, 1, 0, 1, 0, 1, 1, 1, 0, 3, 1, 3, 1, 1, 1, 1, 1, 1, 3, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 0, 0, 3, 3, 1, 3, 3, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 3, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This polynomial is the characteristic polynomial of the Fibonacci and Lucas 3-step recursions, A000073 and A001644. Similar polynomials are treated in Serre's paper. The discriminant of the polynomial is -44 = -4*11. The primes p yielding 3 distinct zeros, A106279, correspond to the periods of the sequences A000073(k) mod p and A001644(k) mod p having length less than p. The Lucas 3-step sequence mod p has two additional primes p for which the period is less than p: 2 and 11, which are factors of the discriminant -44. For p=11, the Fibonacci 3-step sequence mod p has a period of p(p-1).

Crossrefs

Cf. A106273 (discriminant of the polynomial x^n-x^(n-1)-...-x-1), A106293 (period of the Lucas 3-step sequences mod prime(n)), A106282 (prime moduli for which the polynomial is irreducible).

Programs

  • Mathematica
    Table[p=Prime[n]; cnt=0; Do[If[Mod[x^3-x^2-x-1, p]==0, cnt++ ], {x, 0, p-1}]; cnt, {n, 150}]

A106294 Period of the Lucas 3-step sequence A001644 mod prime(n).

Original entry on oeis.org

1, 13, 31, 48, 10, 168, 96, 360, 553, 140, 331, 469, 560, 308, 46, 52, 3541, 1860, 1519, 5113, 5328, 3120, 287, 8011, 3169, 680, 51, 1272, 990, 12883, 5376, 5720, 18907, 3864, 7400, 2850, 8269, 162, 9296, 2494, 32221, 10981, 36673, 4656, 3234, 198, 5565
Offset: 1

Views

Author

T. D. Noe, May 02 2005

Keywords

Comments

This sequence differs from the corresponding Fibonacci sequence (A106302) at n=1 and 5 because these correspond to the primes 2 and 11, which are the prime factors of -44, the discriminant of the characteristic polynomial x^3-x^2-x-1. We have a(n) < prime(n) for the primes 2, 11 and A106279.
For a prime p, the period depends on the zeros of x^3-x^2-x-1 mod p. If there are 3 zeros, then the period is < p. If there are no zeros, then the period is p^2+p+1 or a simple fraction of p^2+p+1. Also note that the period can be prime, as for p=3, 5, 31, 59, 71, 89, 97, 157, 223. When the period is prime, the orbits have a simple structure. [From T. D. Noe, Sep 18 2008]

Crossrefs

Programs

  • Mathematica
    n=3; Table[p=Prime[i]; a=Join[Table[ -1, {n-1}], {n}]; a=Mod[a, p]; a0=a; k=0; While[k++; s=Mod[Plus@@a, p]; a=RotateLeft[a]; a[[n]]=s; a!=a0]; k, {i, 60}]

Formula

a(n) = A106293(prime(n)).
Showing 1-4 of 4 results.