cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A001872 Convolved Fibonacci numbers.

Original entry on oeis.org

1, 4, 14, 40, 105, 256, 594, 1324, 2860, 6020, 12402, 25088, 49963, 98160, 190570, 366108, 696787, 1315072, 2463300, 4582600, 8472280, 15574520, 28481220, 51833600, 93914325, 169457708, 304597382, 545556512, 973877245, 1733053440, 3075011478
Offset: 0

Views

Author

Keywords

Comments

6*a(n) is the number of ways to tile a strip of length n+6 with squares and three colors of dominos, where we must have the same number of dominos of each color. - Greg Dresden and Jiachen Weng, Aug 14 2025

References

  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 101.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Magma
    [(n+5)*(n+3)*(4*(n+1)*Fibonacci(n+2)+3*(n+2)*Fibonacci(n+1))/150: n in [0..30]]; // Vincenzo Librandi, Nov 19 2014
  • Maple
    a := n-> (Matrix(8, (i,j)-> if (i=j-1) then 1 elif j=1 then [4,-2,-8,5, 8,-2,-4,-1][i] else 0 fi)^n)[1,1]; seq (a(n), n=0..29);  # Alois P. Heinz, Aug 15 2008
  • Mathematica
    CoefficientList[Series[1/(1 - x - x^2)^4, {x, 0, 100}], x] (* Stefan Steinerberger, Apr 15 2006 *)
  • PARI
    Vec( 1/(1 - x - x^2)^4 + O(x^66) )  \\ Joerg Arndt, May 12 2014
    

Formula

G.f.: 1/(1 - x - x^2)^4.
a(n) = A037027(n+3, 3) (Fibonacci convolution triangle).
a(n) = (n+5)*(n+3)*(4*(n+1)*F(n+2)+3*(n+2)*F(n+1))/150, F(n)=A000045(n). - Wolfdieter Lang, Apr 12 2000
For n > 3, a(n-3) = Sum_{h+i+j+k=n} F(h)*F(i)*F(j)*F(k). - Benoit Cloitre, Nov 01 2002
a(n) = F'''(n+3, 1)/6, i.e., 1/6 times the 3rd derivative of the (n+3)th Fibonacci polynomial evaluated at 1. - T. D. Noe, Jan 18 2006
a(n) = (((-i)^n)/3!)*(d^3/dx^3)S(n+3,x)|A049310%20for%20the%20S-polynomials.%20-%20_Wolfdieter%20Lang">{x=i}, where i is the imaginary unit. Third derivative of Chebyshev S(n+3,x) polynomial evaluated at x=i multiplied by ((-i)^(n-3))/3!. See A049310 for the S-polynomials. - _Wolfdieter Lang, Apr 04 2007
a(n) = Sum_{i=ceiling(n/2)..n} (i+1)*(i+2)*(i+3)*binomial(i,n-i)/6. - Vladimir Kruchinin, Apr 26 2011
Recurrence: a(n) = 4*a(n-1) - 2*a(n-2) - 8*a(n-3) + 5*a(n-4) + 8*a(n-5) - 2*a(n-6) - 4*a(n-7) - a(n-8). - Fung Lam, May 11 2014
n*a(n) - (n+3)*a(n-1) - (n+6)*a(n-2) = 0, n > 1. - Michael D. Weiner, Nov 18 2014