A002294 a(n) = binomial(5*n, n)/(4*n + 1).
1, 1, 5, 35, 285, 2530, 23751, 231880, 2330445, 23950355, 250543370, 2658968130, 28558343775, 309831575760, 3390416787880, 37377257159280, 414741863546285, 4628362722856425, 51912988256282175, 584909606696793885, 6617078646960613370
Offset: 0
Examples
There are a(2) = 5 quintic trees (vertex degree <= 5 and 5 possible branchings) with 2 vertices (one of them the root). Adding one more branch (one more vertex) to these five trees yields 5*5 + binomial(5,2) = 35 = a(3) such trees. G.f. = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 + 23751*x^6 + 231880*x^7 + ... G.f. = t + t^5 + 5*t^9 + 35*t^13 + 285*t^17 + 2530*t^21 + 23751*t^25 + 231880*t^29 + ...
References
- Archiv der Mathematik u. Physik, Editor's note: "Über die Bestimmung der Anzahl der verschiedenen Arten, auf welche sich ein n-Eck durch Diagonalen in lauter m-Ecke zerlegen laesst, mit Bezug auf einige Abhandlungen der Herren Lame, Rodrigues, Binet, Catalan und Duhamel in dem Journal de Mathematiques pures et appliquees, publie par Joseph Liouville. T. III. IV.", Archiv der Mathematik u. Physik, 1 (1841), pp. 193ff; see especially p. 198.
- Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 23.
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, pp. 200, 347.
- G. Pólya and G. Szegő, Problems and Theorems in Analysis, Springer-Verlag, Heidelberg, New York, 2 vols., 1972, Vol. 1, problem 211, p. 146 with solution on p. 348.
- Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nürnberg, Jul 27 1994.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- V. E. Adler and A. B. Shabat, Volterra chain and Catalan numbers, arXiv:1810.13198 [nlin.SI], 2018.
- Joerg Arndt, Matters Computational (The Fxtbook), pp. 337-338.
- Joerg Arndt, Subset-lex: did we miss an order?, arXiv:1405.6503 [math.CO], 2014-2015.
- A. Asinowski, B. Hackl, and S. Selkirk, Down step statistics in generalized Dyck paths, arXiv:2007.15562 [math.CO], 2020.
- Paul Barry, Characterizations of the Borel triangle and Borel polynomials, arXiv:2001.08799 [math.CO], 2020.
- Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
- L. W. Beineke and R. E. Pippert, On the enumeration of planar trees of hexagons, Glasgow Math. J., 15 (1974), 131-147.
- L. W. Beineke and R. E. Pippert, On the enumeration of planar trees of hexagons, Glasgow Math. J., 15 (1974), 131-147. [Annotated scanned copy]
- Frits Beukers, Hypergeometric functions, how special are they?, Notices Amer. Math. Soc. 61(1) (2014), 48-56. MR3137256
- Wun-Seng Chou, Tian-Xiao He, and Peter J.-S. Shiue, On the Primality of the Generalized Fuss-Catalan Numbers, J. Int. Seqs., Vol. 21 (2018), #18.2.1.
- Malin Christensson, Make hyperbolic tilings of images, web page, 2019.
- Olivier Danvy, Summa Summarum: Moessner's Theorem without Dynamic Programming, arXiv:2412.03127 [cs.DM], 2024. See p. 25.
- C. Defant and N. Kravitz, Stack-sorting for words, arXiv:1809.09158 [math.CO], 2018.
- R. W. Gosper, Rope around the earth
- F. Harary, E. M. Palmer and R. C. Read, On the cell-growth problem for arbitrary polygons, Discr. Math. 11 (1975), 371-389.
- F. Harary, E. M. Palmer, and R. C. Read, On the cell-growth problem for arbitrary polygons, computer printout, circa 1974.
- Clemens Heuberger, Sarah J. Selkirk, and Stephan Wagner, Enumeration of Generalized Dyck Paths Based on the Height of Down-Steps Modulo k, arXiv:2204.14023 [math.CO], 2022.
- Forrest M. Hilton, Finite Dynamical Laminations, arXiv:2408.01353 [math.DS], 2024. See p. 7.
- V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 287.
- R. P. Loh, A. G. Shannon, and A. F. Horadam, Divisibility Criteria and Sequence Generators Associated with Fermat Coefficients, preprint, 1980.
- J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv:1403.5962 [math.CO], 2014.
- Mitchell Paukner, Lucy Pepin, Manda Riehl, and Jarred Wieser, Pattern Avoidance in Task-Precedence Posets, arXiv:1511.00080 [math.CO], 2015-2016.
- Karol A. Penson and Karol Zyczkowski, Product of Ginibre matrices : Fuss-Catalan and Raney distribution, arXiv version, arXiv:1103.3453 [math-ph], 2011.
- Yuan (Friedrich) Qiu, Joe Sawada, and Aaron Williams, Maximize the Rightmost Digit: Gray Codes for Restricted Growth Strings, WALCOM 2025. See p. 5.
- John Stillwell, Eisenstein's footnote, Math. Intelligencer 17(2) (1995), 58-62. MR1336074 (96d:01024)
- B. Sury, Generalized Catalan numbers: linear recursion and divisibility, JIS 12 (2009), Article 09.7.5.
- L. Takacs, Enumeration of rooted trees and forests, Math. Scientist 18 (1993), 1-10, esp. Eq. (5).
- Wikipedia, Fuss-Catalan number.
- N. J. Wildberger and Dean Rubine, A Hyper-Catalan Series Solution to Polynomial Equations, and the Geode, Amer. Math. Monthly (2025). See section 12.
- S. Yakoubov, Pattern Avoidance in Extensions of Comb-Like Posets, arXiv:1310.2979 [math.CO], 2013-2014.
- Jun Yan, Lattice paths enumerations weighted by ascent lengths, arXiv:2501.01152 [math.CO], 2025. See p. 7.
Crossrefs
Programs
-
GAP
List([0..22],n->Binomial(5*n,n)/(4*n+1)); # Muniru A Asiru, Nov 01 2018
-
Haskell
a002294 n = a002294_list !! n a002294_list = [a258708 (3 * n) (2 * n) | n <- [1..]] -- Reinhard Zumkeller, Jun 23 2015
-
Magma
[ Binomial(5*n,n)/(4*n+1): n in [0..100]]; // Vincenzo Librandi, Mar 24 2011
-
Maple
seq(binomial(5*k+1,k)/(5*k+1),k=0..30); # Robert FERREOL, Apr 03 2015 n:=30:G:=series(RootOf(g = 1+x*g^5, g),x=0,n+1):seq(coeff(G,x,k),k=0..n); # Robert FERREOL, Apr 03 2015
-
Mathematica
CoefficientList[InverseSeries[ Series[ y - y^5, {y, 0, 100}], x], x][[Range[2, 100, 4]]] Table[Binomial[5n,n]/(4n+1),{n,0,20}] (* Harvey P. Dale, Dec 30 2011 *) a[ n_] := SeriesCoefficient[ HypergeometricPFQ[ {1, 2, 3, 4}/5, {2, 3, 5}/4, x 5^5/4^4], {x, 0, n}]; (* Michael Somos, May 06 2015 *) a[ n_] := With[{m = 4 n + 1}, SeriesCoefficient[ InverseSeries @ Series[ x - x^5, {x, 0, m}], {x, 0, m}]]; (* Michael Somos, May 06 2015 *)
-
PARI
{a(n) = binomial( 5 * n, n) / (4*n + 1)}; /* Michael Somos, Mar 17 2011 */
-
PARI
{a(n) = if( n<0, 0, n = 4*n + 1; polcoeff( serreverse( x - x^5 + x * O(x^n) ), n))}; /* Michael Somos, Mar 17 2011 */
Formula
For the connection with the solution of the quintic, hypergeometric series, and Lagrange inversion, see Beukers (2014). - N. J. A. Sloane, Mar 12 2014
G.f.: hypergeometric([1, 2, 3, 4] / 5, [2, 3, 5] / 4, x * 5^5 / 4^4). - Michael Somos, Mar 17 2011
O.g.f. A(x) satisfies A(x) = 1 + x * A(x)^5 = 1 / (1 - x * A(x)^4).
Given g.f. A(x) then z = t * A(t^4) satisfies 0 = z^5 - z + t. - Michael Somos, Mar 17 2011
a(n) = binomial(5*n, n - 1)/n, n >= 1, a(0) = 1. From the Lagrange series of the o.g.f. A(x) with its above given implicit equation.
a(n) = upper left term in M^n, M = the production matrix:
1, 1;
4, 4, 1;
10, 10, 4, 1;
20, 20, 10, 4, 1;
...
where (1, 4, 10, 20, ...) is the tetrahedral sequence, A000292. - Gary W. Adamson, Jul 08 2011
D-finite with recurrence: 8*n*(4*n+1)*(2*n-1)*(4*n-1)*a(n) - 5*(5*n-4)*(5*n-3)*(5*n-2)*(5*n-1)*a(n-1) = 0. - R. J. Mathar, Dec 02 2014
a(n) = binomial(5*n + 1, n)/(5*n + 1) = A062993(n+3,3). - Robert FERREOL, Apr 03 2015
a(0) = 1; a(n) = Sum_{i1 + i2 + ... + i5 = n - 1} a(i1) * a(i2) * ... *a(i5) for n >= 1. - Robert FERREOL, Apr 03 2015
From Ilya Gutkovskiy, Jan 15 2017: (Start)
O.g.f.: 5F4([1/5, 2/5, 3/5, 4/5, 1]; [1/2, 3/4, 1, 5/4]; 3125*x/256).[Cancellation of the 1s, see G.f. the above. - Wolfdieter Lang, Feb 05 2024]
E.g.f.: 4F4([1/5, 2/5, 3/5, 4/5]; [1/2, 3/4, 1, 5/4]; 3125*x/256).
a(n) ~ 5^(5*n + 1/2)/(sqrt(Pi) * 2^(8*n + 7/2) * n^(3/2)). (End)
x*A'(x)/A(x) = (A(x) - 1)/(- 4*A(x) + 5) = x + 9*x^2 + 91*x^3 + 969*x^4 + ... is the o.g.f. of A163456. Cf. A001764 and A002293 - A002296. - Peter Bala, Feb 04 2022
G.f. A(x) satisfies A(x) = 1/A(-x*A(x)^9). - Seiichi Manyama, Jun 16 2025
Extensions
More terms from Olivier Gérard, Jul 05 2001
Comments