cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A129925 Triangular sequence based on A002301 and the alternating groups a prime -adic: t(n,m)=n!/Prime[m] for n>=Prime[m].

Original entry on oeis.org

1, 3, 2, 12, 8, 60, 40, 24, 360, 240, 144, 2520, 1680, 1008, 720, 20160, 13440, 8064, 5760, 181440, 120960, 72576, 51840, 1814400, 1209600, 725760, 518400, 19958400, 13305600, 7983360, 5702400, 3628800, 239500800, 159667200, 95800320, 68428800
Offset: 1

Views

Author

Roger L. Bagula, Jun 06 2007

Keywords

Comments

Alternating groups are: An->n!/2 for n>=2 If the tritonic or triple symmetric groups are: Tn->n!/3 for n>=4 Then the pentatonic would be: Pn->n!/5 for n>=5 General: ( triangular sequence) G(m)n=n!/Prime[m] for n>=Prime[m]

Examples

			{1},
{3, 2},
{12, 8},
{60, 40, 24},
{360, 240, 144},
{2520, 1680, 1008, 720},
{20160, 13440, 8064, 5760},
{181440, 120960, 72576, 51840},
{1814400, 1209600, 725760, 518400},
		

Crossrefs

Cf. A002301.

Programs

  • Mathematica
    g[n_, m_] = If[n >= Prime[m], n!/Prime[m], {}]; a = Table[Flatten[Table[g[n, m], {m, 1, n}]], {n, 1, 23}]; Flatten[a]

Formula

t(n,m)=n!/Prime[m] for n>=Prime[m]

A155100 Triangle read by rows: coefficients in polynomials P_n(u) arising from the expansion of D^(n-1) (tan x) in increasing powers of tan x for n>=1 and 1 for n=0.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 2, 0, 2, 2, 0, 8, 0, 6, 0, 16, 0, 40, 0, 24, 16, 0, 136, 0, 240, 0, 120, 0, 272, 0, 1232, 0, 1680, 0, 720, 272, 0, 3968, 0, 12096, 0, 13440, 0, 5040, 0, 7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320, 7936, 0, 176896, 0, 814080, 0, 1491840
Offset: 0

Views

Author

N. J. A. Sloane, Nov 05 2009

Keywords

Comments

The definition is d^(n-1) tan x / dx^n = P_n(tan x) for n>=1 and 1 for n=0.
Interpolates between factorials and tangent numbers.
From Peter Bala, Mar 02 2011: (Start)
Companion triangles are A104035 and A185896.
A combinatorial interpretation for the polynomial P_n(t) as the generating function for a sign change statistic on certain types of signed permutation can be found in [Verges].
A signed permutation is a sequence (x_1,x_2,...,x_n) of integers such that {|x_1|,|x_2|,...,|x_n|} = {1,2,...,n}.
They form a group, the hyperoctahedral group of order 2^n*n! = A000165(n), isomorphic to the group of symmetries of the n dimensional cube.
Let x_1,...,x_n be a signed permutation and put x_0 = -(n+1) and x_(n+1) = (-1)^n*(n+1). Then x_0,x_1,...,x_n,x_(n+1) is a snake of type S(n) when x_0 < x_1 > x_2 < ... x_(n+1). For example, -5 4 -3 -1 -2 5 is a snake of type S(4).
Let sc be the number of sign changes through a snake sc = #{i, 0 <= i <= n, x_i*x_(i+1) < 0}. For example, the snake -5 4 -3 -1 -2 5 has sc = 3.
The polynomial P_(n+1)(t) is the generating function for the sign change statistic on snakes of type S(n): P_(n+1)(t) = sum {snakes in S(n)} t^sc.
See the example section below for the cases n=1 and n=2.
(End)
Equals A107729 when the first column is removed. - Georg Fischer, Jul 26 2023

Examples

			The polynomials P_{-1}(u) through P_6(u) with exponents in decreasing order:
      1
      u
      u^2 +    1
    2*u^3 +    2*u
    6*u^4 +    8*u^2 +    2
   24*u^5 +   40*u^3 +   16*u
  120*u^6 +  240*u^4 +  136*u^2 +  16
  720*u^7 + 1680*u^5 + 1232*u^3 + 272*u
  ...
Triangle begins:
  1
  0, 1
  1, 0, 1
  0, 2, 0, 2
  2, 0, 8, 0, 6
  0, 16, 0, 40, 0, 24
  16, 0, 136, 0, 240, 0, 120
  0, 272, 0, 1232, 0, 1680, 0, 720
  272, 0, 3968, 0, 12096, 0, 13440, 0, 5040
  0, 7936, 0, 56320, 0, 129024, 0, 120960, 0, 40320
  7936, 0, 176896, 0, 814080, 0, 1491840, 0, 1209600, 0, 362880
  0, 353792, 0, 3610112, 0, 12207360, 0, 18627840, 0, 13305600, 0, 3628800
  ...
From _Peter Bala_, Feb 07 2011: (Start)
Examples of sign change statistic sc on snakes of type S(n):
    Snakes     # sign changes sc  t^sc
  ===========  =================  ====
n=1:
  -2  1 -2 ........... 2 ........ t^2
  -2 -1 -2 ........... 0 ........ 1
                  yields P_2(t) = 1 + t^2;
n=2:
  -3  1 -2  3 ........ 3 ........ t^3
  -3  2  1  3 ........ 1 ........ t
  -3  2 -1  3 ........ 3 ........ t^3
  -3 -1 -2  3 ........ 1 ........ t
                  yields P_3(t) = 2*t + 2*t^3. (End)
		

References

  • R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics, Addison-Wesley, Reading, MA, 2nd ed. 1998, p. 287.

Crossrefs

For other versions of this triangle see A008293, A101343.
A104035 is a companion triangle.
Highest order coefficients give factorials A000142. Constant terms give tangent numbers A000182. Other coefficients: A002301.
Setting u=1 in P_n gives A000831, u=2 gives A156073, u=3 gives A156075, u=4 gives A156076, u=1/2 gives A156102.
Setting u=sqrt(2) in P_n gives A156108 and A156122; setting u=sqrt(3) gives A156103 and A000436.

Programs

  • Maple
    P:=proc(n) option remember;
    if n=-1 then RETURN(1); elif n=0 then RETURN(u); else RETURN(expand((u^2+1)*diff(P(n-1),u))); fi;
    end;
    for n from -1 to 12 do t1:=series(P(n),u,20); lprint(seriestolist(t1)); od:
    # Alternatively:
    with(PolynomialTools): seq(print(CoefficientList(`if`(i=0,1,D@@(i-1))(tan),tan)), i=0..7); # Peter Luschny, May 19 2015
  • Mathematica
    p[n_, u_] := D[Tan[x], {x, n}] /. Tan[x] -> u /. Sec[x] -> Sqrt[1 + u^2] // Expand; p[-1, u_] = 1; Flatten[ Table[ CoefficientList[ p[n, u], u], {n, -1, 9}]] (* Jean-François Alcover, Jun 28 2012 *)
    T[ n_, k_] := Which[n<0, Boole[n==-1 && k==0], n==0, Boole[k==1], True, (k-1)*T[n-1, k-1] + (k+1)*T[n-1, k+1]]; (* Michael Somos, Jul 09 2024 *)
  • PARI
    {T(n, k) = if(n<0, n==-1 && k==0, n==0, k==1, (k-1)*T(n-1, k-1) + (k+1)*T(n-1, k+1))}; /* Michael Somos, Jul 09 2024 */

Formula

If the polynomials are denoted by P_n(u), we have the recurrence P_{-1}=1, P_0 = u, P_n = (u^2+1)*dP_{n-1}/du.
G.f.: Sum_{n >= 0} P_n(u) t^n/n! = (sin t + u*cos t)/(cos t - u sin t). [Hoffman]
From Peter Bala, Feb 07 2011: (Start)
RELATION WITH BERNOULLI NUMBERS A000367 AND A002445
Put T(n,t) = P_n(i*t), where i = sqrt(-1). We have the definite integral evaluation, valid when both m and n are >=1 and m+n >= 4:
int( T(m,t)*T(n,t)/(1-t^2), t = -1..1) = (-1)^((m-n)/2)*2^(m+n-1)*Bernoulli(m+n-2).
The case m = n is equivalent to the result of [Grosset and Veselov]. The methods used there extend to the general case.
RELATION WITH OTHER ROW POLYNOMIALS
The following three identities hold for n >= 1:
P_(n+1)(t) = (1+t^2)*R(n-1,t) where R(n,t) is the n-th row polynomial of A185896.
P_(n+1)(t) = (-2*i)^n*(t-i)*R(n,-1/2+1/2*i*t), where i = sqrt(-1) and R(n,x) is an ordered Bell polynomial, that is, the n-th row polynomial of A019538.
P_(n+1)(t) = (t-i)*(t+i)^n*A(n,(t-i)/(t+i)), where {A(n,t)}n>=1 = [1,1+t,1+4*t+t^2,1+11*t+11*t^2+t^3,...] is the sequence of Eulerian polynomials - see A008292. (End)
T(n,k) = cos((n+k)*Pi/2) * Sum_{p=0..n-1} A008292(n-1,p+1) Sum_{j=0..k}(-1)^(p+j+1) * binomial(p+1,k-j) *binomial(n-p-1,j) for n>1. - Ammar Khatab, Aug 15 2024

Extensions

Name clarified by Peter Luschny, May 25 2015

A162990 Triangle of polynomial coefficients related to 3F2([1,n+1,n+1],[n+2,n+2],z).

Original entry on oeis.org

4, 36, 9, 576, 144, 64, 14400, 3600, 1600, 900, 518400, 129600, 57600, 32400, 20736, 25401600, 6350400, 2822400, 1587600, 1016064, 705600, 1625702400, 406425600, 180633600, 101606400, 65028096, 45158400, 33177600, 131681894400
Offset: 1

Views

Author

Johannes W. Meijer, Jul 21 2009

Keywords

Comments

The hypergeometric function 3F2([1,n+1,n+1],[n+2,n+2],z) = (n+1)^2*Li2(z)/z^(n+1) - MN(z;n)/(n!^2*z^n) for n >= 1, with Li2(z) the dilogarithm. The polynomial coefficients of MN(z;n) lead to the triangle given above.
We observe that 3F2([1,1,1],[2,2],z) = Li2(z)/z and that 3F2([1,0,0],[1,1],z) = 1.
The generating function for the EG1[3,n] coefficients of the EG1 matrix, see A162005, is GFEG1(z;m=2) = 1/(1-z)*(3*zeta(3)/2-2*z*log(2)* 3F2([1,1,1],[2,2],z) + sum((2^(1-2*n)* factorial(2*n-1)*z^(n+1)*3F2([1,n+1,n+1],[n+2,n+2],z))/(factorial(n+1)^2), n=1..infinity)).
The zeros of the MN(z;n) polynomials for larger values of n get ever closer to the unit circle and resemble the full moon, hence we propose to call the MN(z;n) the moon polynomials.

Examples

			The first few rows of the triangle are:
  [4]
  [36, 9]
  [576, 144, 64]
  [14400, 3600, 1600, 900]
The first few MN(z;n) polynomials are:
  MN(z;n=1) = 4
  MN(z;n=2) = 36 + 9*z
  MN(z;n=3) = 576 + 144*z + 64*z^2
  MN(z;n=4) = 14400 + 3600*z + 1600*z^2 + 900*z^3
		

References

  • Lewin, L., Polylogarithms and Associated Functions. New York, North-Holland, 1981.

Crossrefs

A162995 is a scaled version of this triangle.
A001819(n)*(n+1)^2 equals the row sums for n>=1.
A162991 and A162992 equal the first and second right hand columns.
A001048, A052747, A052759, A052778, A052794 are related to the square root of the first five right hand columns.
A001044, A162993 and A162994 equal the first, second and third left hand columns.
A000142, A001710, A002301, A133799, A129923, A001715 are related to the square root of the first six left hand columns.
A027451(n+1) equals the denominators of M(z, n)/(n!)^2.
A129202(n)/A129203(n) = (n+1)^2*Li2(z=1)/(Pi^2) = (n+1)^2/6.
Cf. A002378 and A035287.

Programs

  • Maple
    a := proc(n, m): ((n+1)!/m)^2 end: seq(seq(a(n, m), m=1..n), n=1..7); # Johannes W. Meijer, revised Nov 29 2012
  • Mathematica
    Table[((n+1)!/m)^2, {n, 10}, {m, n}] (* Paolo Xausa, Mar 30 2024 *)

Formula

a(n,m) = ((n+1)!/m)^2 for n >= 1 and 1 <= m <= n.

A094310 Triangle read by rows: T(n,k), the k-th term of the n-th row, is the product of all numbers from 1 to n except k: T(n,k) = n!/k.

Original entry on oeis.org

1, 2, 1, 6, 3, 2, 24, 12, 8, 6, 120, 60, 40, 30, 24, 720, 360, 240, 180, 144, 120, 5040, 2520, 1680, 1260, 1008, 840, 720, 40320, 20160, 13440, 10080, 8064, 6720, 5760, 5040, 362880, 181440, 120960, 90720, 72576, 60480, 51840, 45360, 40320, 3628800, 1814400, 1209600, 907200, 725760, 604800, 518400, 453600, 403200, 362880
Offset: 1

Views

Author

Amarnath Murthy, Apr 29 2004

Keywords

Comments

The sum of the rows gives A000254 (Stirling numbers of first kind). The first column and the leading diagonal are factorials given by A000142 with offsets of 0 and 1.
T(n,k) is the number of length k cycles in all permutations of {1..n}.
Second diagonal gives A001048(n). - Anton Zakharov, Oct 24 2016
T(n,k) is the number of permutations of [n] with all elements of [k] in a single cycle. To prove this result, let m denote the length of the cycle containing {1,..,k}. Letting m run from k to n, we obtain T(n,k) = Sum_{m=k..n} (C(n-k,m-k)*(m-1)!*(n-m)!) = n!/k. See an example below. - Dennis P. Walsh, May 24 2020

Examples

			Triangle begins as:
      1;
      2,     1;
      6,     3,     2;
     24,    12,     8,     6;
    120,    60,    40,    30,   24;
    720,   360,   240,   180,  144,  120;
   5040,  2520,  1680,  1260, 1008,  840,  720;
  40320, 20160, 13440, 10080, 8064, 6720, 5760, 5040;
  ...
T(4,2) counts the 12 permutations of [4] with elements 1 and 2 in the same cycle, namely, (1 2)(3 4), (1 2)(3)(4), (1 2 3)(4), (1 3 2)(4), (1 2 4)(3), (1 4 2)(3), (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), and (1 4 3 2). - _Dennis P. Walsh_, May 24 2020
		

Crossrefs

Programs

  • Maple
    seq(seq(n!/k, k=1..n), n=1..10);
  • Mathematica
    Table[n!/k, {n,10}, {k,n}]//Flatten
    Table[n!/Range[n], {n,10}]//Flatten (* Harvey P. Dale, Mar 12 2016 *)

Formula

E.g.f. for column k: x^k/(k*(1-x)).
T(n,k)*k = n*n! = A001563(n).

Extensions

More terms from Philippe Deléham, Jun 11 2005

A196842 Table of the elementary symmetric functions a_k(1,2,4,5,...,n+1).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 7, 14, 8, 1, 12, 49, 78, 40, 1, 18, 121, 372, 508, 240, 1, 25, 247, 1219, 3112, 3796, 1680, 1, 33, 447, 3195, 12864, 28692, 32048, 13440, 1, 42, 744, 7218, 41619, 144468, 290276, 301872, 120960, 1, 52, 1164, 14658, 113799, 560658, 1734956, 3204632, 3139680, 1209600
Offset: 0

Views

Author

Wolfdieter Lang, Oct 24 2011

Keywords

Comments

For the symmetric functions a_k and the definition of the triangles S_j(n,k) see a comment in A196841. Here x[1]=1, x[2]=2, and x[j]=j+1 for j=3,...,n. This is the triangle S_3(n,k), n>=0, k=0..n. The first three rows coincide with those of triangle A094638.

Examples

			n\k   0    1    2     3      4      5     6       7  ...
0:    1
1:    1    1
2:    1    3    2
3:    1    7   14     8
4:    1   12   49    78     40
5:    1   18  121   372    508    240
6:    1   25  247  1219   3112   3796   1680
7:    1   33  447  3195  12864  28692  32048  13440
...
a(1,0) = a_0(1):= 1, a(1,1) = a_1(1)= 1.
a(3,2) = a_2(1,2,4) = 1*2 + 1*4 + 2*4 = 14.
a(3,2) = 1*|s(5,3)| - 3*|s(5,4)| + 9*|s(5,5)| = 1*35-3*10+9*1 = 14.
		

Crossrefs

Cf. A094638, A145324,|A123319|, A196841, A055998 (column k=1), A002301 (diagonal), A277132 (subdiagonal).

Programs

  • Maple
    A196842 := proc(n,k)
        if n = 1 and k =1 then
            1 ;
        else
            add( abs( combinat[stirling1](n+2,n+2-k+m))*(-3)^m,m=0..k) ;
        end if;
    end proc: # R. J. Mathar, Oct 01 2016
  • Mathematica
    a[n_, k_] := If[n == 1 && k == 1, 1, Sum[(-3)^m Abs[StirlingS1[n + 2, n + 2 - k + m]], {m, 0, k}]];
    Table[a[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 16 2023, after R. J. Mathar *)

Formula

a(n,k) = a_k(1,2,..,n) if 0<=n<3, and a_k(1,2,4,5,...,n+1) if n>=3, with the elementary symmetric functions a_k defined in a comment to A196841.
a(n,k) = 0 if n=3, with the Stirling numbers of the first kind s(n,m)=A048994(n,m).

A350970 Triangle T(n,k) (n>=0, 0<=k<=n) read by rows: T(0,0)=T(1,1)=1; T(n,0) is the Euler number A000111(n-1) for n>=1; T(n,n-1) = T(n,n) = (n-2)! for n>=2; interior entries are given by T(n,k) = m*T(n-1,k-1)+(k+1)*T(n-1,k+1) where m = k if n+k is even or k-1 if n+k is odd.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 5, 8, 6, 6, 5, 16, 28, 40, 24, 24, 16, 61, 136, 180, 240, 120, 120, 61, 272, 662, 1232, 1320, 1680, 720, 720, 272, 1385, 3968, 7266, 12096, 10920, 13440, 5040, 5040, 1385, 7936, 24568, 56320, 83664, 129024, 100800, 120960, 40320, 40320, 7936, 50521, 176896, 408360, 814080, 1023120, 1491840, 1028160, 1209600, 362880, 362880
Offset: 0

Views

Author

N. J. A. Sloane, Mar 03 2022

Keywords

Comments

Triangle connects Euler numbers on left and factorial numbers on right.

Examples

			Triangle begins:
    1,
    1,    1,
    1,    1,    1,
    1,    2,    2,    2,
    2,    5,    8,    6,     6,
    5,   16,   28,   40,    24,    24,
   16,   61,  136,  180,   240,   120,   120,
   61,  272,  662, 1232,  1320,  1680,   720,  720,
  272, 1385, 3968, 7266, 12096, 10920, 13440, 5040, 5040,
  ...
This may also be constructed as a square array, with entries T(n,k), n >= 1, 0 <= k, whose columns have e.g.f. equal to sec(x)+tan(x) (if k=0) and sec(x)*tan(x)^(k-1)*(sec(x)+tan(x)) (if k>0):
1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
2, 5, 8, 6, 6, 0, 0, 0, 0, 0, 0, 0, 0, ...
5, 16, 28, 40, 24, 24, 0, 0, 0, 0, 0, 0, 0, ...
16, 61, 136, 180, 240, 120, 120, 0, 0, 0, 0, 0, 0, ...
61, 272, 662, 1232, 1320, 1680, 720, 720, 0, 0, 0, 0, 0, ...
272, 1385, 3968, 7266, 12096, 10920, 13440, 5040, 5040, 0, 0, 0, 0, ...
...
		

References

  • A. Boutin, Query 2784, L'Intermédiaire des Mathématiciens, 11 (1904), 252-254.
  • E. Estanave, Query 2784, L'Intermédiaire des Mathématiciens, 11 (1904), pp. 117-118.

Crossrefs

The initial columns are A000111, A000111, A225689, A350971.
The diagonals, reading from the right, are (essentially) A000142, A000142, A002301, A006157, A002302, A350973, A002303, A350974, A350975.
Rows sums give A156142(n-1).
Cf. A007836.

Programs

  • Maple
    for n from 0 to 12 do
    T[n]:=Array(0..n,0);
    T[0,0] := 1;
    T[1,0] := 1; T[1,1] := 1;
    if n>1 then
      T[n,0] := T[n-1,1];
    for k from 1 to n-2 do
    m:=k; if ((n+k) mod 2) = 0 then m:=k-1; fi;
    T[n,k] := m*T[n-1,k-1] + (k+1)*T[n-1,k+1];
    od:
    T[n,n-1] := (n-1)*T[n-1,n-2];
    T[n,n] := T[n,n-1];
    fi;
    lprint( [seq(T[n,k],k=0..n)] );
    od:
    # second Maple program:
    b:= proc(n, i) option remember; `if`(i=0,
         `if`(n=0, 1, 0), b(n, i-1)+b(n-1, n-i))
        end:
    T:= proc(n, k) option remember; `if`(n=0 and k=0, 1,
         `if`(k=0, b(n-1$2), `if`(n-k<=1, (n-1)!, (k+1)*
          T(n-1, k+1)+(k-irem(1+n+k, 2))*T(n-1, k-1))))
        end:
    seq(seq(T(n, k), k=0..n), n=0..10);  # Alois P. Heinz, Mar 04 2022
    # To produce the square array, N. J. A. Sloane, Mar 05 2022:
    read(transforms):
    myegf := (f,M) -> SERIESTOLISTMULT(series(f,x,M));
    T:=proc(n,k,M) local i;
    if k=0 then myegf((sec(x)+tan(x)),M)[n];
    else
    myegf(sec(x)*tan(x)^(k-1)*(sec(x)+tan(x)),M)[n];
    fi;
    end;
    [seq(T(n,0,16),n=1..5)];
    for n from 1 to 8 do
    lprint([seq(T(n,k,16),k=0..12)]);
    od:
  • Mathematica
    b[n_, i_] := b[n, i] = If[i == 0,
         If[n == 0, 1, 0], b[n, i - 1] + b[n - 1, n - i]];
    T[n_, k_] := T[n, k] = If[n == 0 && k == 0, 1,
         If[k == 0, b[n - 1, n - 1], If[n - k <= 1, (n - 1)!, (k + 1)*
         T[n - 1, k + 1] + (k - Mod[1 + n + k, 2])*T[n - 1, k - 1]]]];
    Table[Table[T[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 12 2022, Alois P. Heinz *)

Formula

If we ignore the n=0 row, then the e.g.f. for column 0 is sec(x)+tan(x), and for column k >= 1 it is sec(x)*tan(x)^(k-1)*(sec(x)+tan(x)). See the initial rows of the square array in the EXAMPLES section. - N. J. A. Sloane, Mar 05 2022
abs(Sum_{k=0..n} (-1)^k * T(n,k)) = A007836(n) for n>=2. - Alois P. Heinz, Mar 04 2022

A129923 a(n) = (n+5)! / 5.

Original entry on oeis.org

24, 144, 1008, 8064, 72576, 725760, 7983360, 95800320, 1245404160, 17435658240, 261534873600, 4184557977600, 71137485619200, 1280474741145600, 24329020081766400, 486580401635328000, 10218188434341888000
Offset: 0

Views

Author

Roger L. Bagula, Jun 06 2007

Keywords

Crossrefs

Programs

  • Magma
    [Factorial(n+5)/5: n in [0..30]]; // G. C. Greubel, Sep 28 2024
    
  • Mathematica
    Table[(n+5)!/5, {n, 0, 5 + 25}]
    Range[5,30]!/5 (* Harvey P. Dale, Mar 29 2023 *)
  • PARI
    a(n)=(n+5)!/5;
    
  • SageMath
    [factorial(n+5)//5 for n in range(31)] # G. C. Greubel, Sep 28 2024

Formula

E.g.f.: 24/(1 - x)^6. - G. C. Greubel, Sep 28 2024

Extensions

Edited by Ralf Stephan, Nov 10 2013

A162994 The third left hand column of triangle A162990.

Original entry on oeis.org

64, 1600, 57600, 2822400, 180633600, 14631321600, 1463132160000, 177038991360000, 25493614755840000, 4308420893736960000, 844450495172444160000, 190001361413799936000000, 48640348521932783616000000, 14057060722838574465024000000
Offset: 3

Views

Author

Johannes W. Meijer, Jul 21 2009

Keywords

Crossrefs

A001044 and A162993 are two other left hand columns.
A002301(n+1) equals the square root of a(n).

Programs

  • Mathematica
    Array[((#+1)!/3)^2 &, 20, 3] (* Paolo Xausa, Apr 01 2024 *)

Formula

a(n) = ((n+1)!/3)^2 for n = 3, 4, 5, ... .
a(n) = A002301(n+1)^2.

A082569 a(1)=2; a(n)=ceiling(n*(a(n-1)-1/a(n-1))).

Original entry on oeis.org

2, 3, 8, 32, 160, 960, 6720, 53760, 483840, 4838400, 53222400, 638668800, 8302694400, 116237721600, 1743565824000, 27897053184000, 474249904128000, 8536498274304000, 162193467211776000, 3243869344235520000
Offset: 1

Views

Author

Benoit Cloitre, May 06 2003

Keywords

Crossrefs

Equals 4 * A002301.

Programs

  • Mathematica
    nxt[{n_,a_}]:={n+1,Ceiling[(n+1)(a-1/a)]}; Transpose[NestList[nxt,{1,2},20]][[2]] (* Harvey P. Dale, May 30 2015 *)

Formula

a(1)=2 a(2)=3 and for n>2, a(n)= 4*n!/3.
a(n) = A090802(n, n-3) for n > 2. - Ross La Haye, Sep 26 2005

A100948 Irregular triangle with T(n,1) = floor(n!/3), T(n,2) = n!/2, T(n,3) = n!, read by rows.

Original entry on oeis.org

1, 1, 2, 2, 3, 6, 8, 12, 24, 40, 60, 120, 240, 360, 720, 1680, 2520, 5040, 13440, 20160, 40320, 120960, 181440, 362880, 1209600, 1814400, 3628800
Offset: 2

Views

Author

Roger L. Bagula, Jun 07 2007

Keywords

Examples

			1, 1, 2;
2, 3, 6;
8, 12, 24;
40, 60, 120;
240, 360, 720;
1680, 2520, 5040;
13440, 20160, 40320;
120960, 181440, 362880;
1209600, 1814400, 3628800;
		

Programs

  • Mathematica
    Flatten[Table[{If[n < 3, 1, n!/3], If[n < 2, 1, n!/2], n!}, {n, 1, 10}]]

Formula

T(n,1) = A002301(n), n>=3. T(n,2) = A001710(n). T(n,3) = A000142(n).
Showing 1-10 of 12 results. Next