A129925 Triangular sequence based on A002301 and the alternating groups a prime -adic: t(n,m)=n!/Prime[m] for n>=Prime[m].
1, 3, 2, 12, 8, 60, 40, 24, 360, 240, 144, 2520, 1680, 1008, 720, 20160, 13440, 8064, 5760, 181440, 120960, 72576, 51840, 1814400, 1209600, 725760, 518400, 19958400, 13305600, 7983360, 5702400, 3628800, 239500800, 159667200, 95800320, 68428800
Offset: 1
Examples
{1}, {3, 2}, {12, 8}, {60, 40, 24}, {360, 240, 144}, {2520, 1680, 1008, 720}, {20160, 13440, 8064, 5760}, {181440, 120960, 72576, 51840}, {1814400, 1209600, 725760, 518400},
Crossrefs
Cf. A002301.
Programs
-
Mathematica
g[n_, m_] = If[n >= Prime[m], n!/Prime[m], {}]; a = Table[Flatten[Table[g[n, m], {m, 1, n}]], {n, 1, 23}]; Flatten[a]
Formula
t(n,m)=n!/Prime[m] for n>=Prime[m]
Comments