A002618 a(n) = n*phi(n).
1, 2, 6, 8, 20, 12, 42, 32, 54, 40, 110, 48, 156, 84, 120, 128, 272, 108, 342, 160, 252, 220, 506, 192, 500, 312, 486, 336, 812, 240, 930, 512, 660, 544, 840, 432, 1332, 684, 936, 640, 1640, 504, 1806, 880, 1080, 1012, 2162, 768, 2058, 1000
Offset: 1
Examples
a(4) = 8 since phi(4) = 2 and 4 * 2 = 8. a(5) = 20 since phi(5) = 4 and 5 * 4 = 20.
References
- Peter Giblin, Primes and Programming: An Introduction to Number Theory with Computing. Cambridge: Cambridge University Press (1993) p. 116, Exercise 1.10.
- J. L. Lagrange, Oeuvres, Vol. III Paris 1869.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
- Daniel Fischer, answer to Injectivity of the function n times the Euler Totient of n, Mathematics Stack Exchange, October 2013.
- Mikhail R. Gabdullin and Vitalii V. Iudelevich, Numbers of the form kf(k), arXiv:2201.09287 [math.NT] (2022).
- Dmitry Krachun and Zhi-Wei Sun, Each positive rational number has the form phi(m^2)/phi(n^2), arXiv:2001.03736 [math.HO], 2020. See also The American Mathematical Monthly (2020) Vol. 127, Issue 9, 847-849.
- F. Luca and A. O. Munagi, The number of permutations which form arithmetic progressions modulo m, Annals of the Alexandru Ioan Cuza University, 2014, DOI: 10.2478/aicu-2014-0053. [Broken link]
- C. L. Mallows and N. J. A. Sloane, Notes on A002618, A002619, etc.
- W. Peremans, Completeness of Holomorphs, Nederl. Akad. Wetensch. Indag. Math. Proc. Ser. A, 60. (1957) 608-619.
- N. J. A. Sloane, Notes on A002618, A002619, etc.
- J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61.
- J. E. A. Steggall, On the numbers of patterns which can be derived from certain elements, Mess. Math., 37 (1907), 56-61. [Annotated scanned copy. Note that the scanned pages are out of order]
- Wikipedia, Holomorph.
- Wordpress, Automorphisms of dihedral groups.
Crossrefs
Programs
-
Haskell
a002618 n = a000010 n * n -- Reinhard Zumkeller, Dec 21 2012
-
Magma
[n*EulerPhi(n): n in [1..150]]; // Vincenzo Librandi, Apr 04 2011
-
Maple
with(numtheory):a:=n->phi(n^2): seq(a(n), n=1..50); # Zerinvary Lajos, Oct 07 2007
-
Mathematica
Table[n EulerPhi[n], {n, 100}] (* Artur Jasinski, Jan 22 2008 *)
-
MuPAD
numlib::phi(n^2)$ n=1..81 // Zerinvary Lajos, May 13 2008
-
PARI
a(n)=n*eulerphi(n) \\ Charles R Greathouse IV, Nov 20 2012
-
Python
from sympy import totient as phi def a(n): return n*phi(n) print([a(n) for n in range(1, 51)]) # Michael S. Branicky, Mar 16 2022
-
Sage
[euler_phi(n^2) for n in range(1,51)] # Zerinvary Lajos, Jun 06 2009
Formula
Multiplicative with a(p^e) = (p-1)*p^(2e-1). - David W. Wilson, Aug 01 2001
Dirichlet g.f.: zeta(s-2)/zeta(s-1). - R. J. Mathar, Feb 09 2011
From Wolfdieter Lang, May 12 2011: (Start)
a(n)/2 = A023896(n), n >= 2.
a(n) = lcm(phi(n^2),n). - Enrique Pérez Herrero, May 11 2012
a(n) = phi(n^2). - Wesley Ivan Hurt, Jun 16 2013
G.f.: -x + 2*Sum_{k>=1} mu(k)*k*x^k/(1 - x^k)^3. - Ilya Gutkovskiy, Jan 03 2017
Sum_{n>=1} 1/a(n) = 2.203856... (A065484). - Amiram Eldar, Sep 30 2019
Define f(x) = #{n <= x: a(n) <= x}. Gabdullin & Iudelevich show that f(x) ~ c*sqrt(x) for c = Product_{p prime} (1 + 1/(p*(p - 1 + sqrt(p^2 - p)))) = 1.3651304521525857... - Charles R Greathouse IV, Mar 16 2022
a(n) = Sum_{d divides n} A001157(d)*A046692(n/d); that is, the Dirichlet convolution of sigma_2(n) and the Dirichlet inverse of sigma_1(n). - Peter Bala, Jan 26 2024
Extensions
Better description from Labos Elemer, Feb 18 2000
Comments