cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A002736 Apéry numbers: a(n) = n^2*C(2n,n).

Original entry on oeis.org

0, 2, 24, 180, 1120, 6300, 33264, 168168, 823680, 3938220, 18475600, 85357272, 389398464, 1757701400, 7862853600, 34901442000, 153876579840, 674412197580, 2940343837200, 12759640231800, 55138611528000, 237371722628040, 1018383898440480
Offset: 0

Views

Author

Keywords

Comments

Let H be the n X n Hilbert matrix H(i,j) = 1/(i+j-1) for 1 <= i,j <= n. Let B be the inverse matrix of H. The sum of the elements in row n-1 of B equals -a(n-1). - T. D. Noe, May 01 2011

References

  • J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933, p. 93.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [n^2*Binomial(2*n, n): n in [0..30]]; // Vincenzo Librandi, Aug 08 2014
    
  • Maple
    seq(n^2*binomial(2*n,n), n=0..50); # Robert Israel, Aug 07 2014
  • Mathematica
    CoefficientList[ Series[x (4 x + 2)/(1 - 4 x)^(5/2), {x, 0, 20}], x] (* Robert G. Wilson v, Aug 08 2011 *)
    Table[n^2 Binomial[2n,n],{n,0,30}] (* Harvey P. Dale, Jun 21 2017 *)
  • MuPAD
    combinat::catalan(n)*(n+1)*n^2 $ n = 0..36 // Zerinvary Lajos, Apr 17 2007
    
  • PARI
    my(x='x+O('x^100)); concat(0, Vec(x*(4*x+2)/((1-4*x)^(5/2)))) \\ Altug Alkan, Mar 21 2016
    
  • PARI
    a(n) = n^2*binomial(2*n, n); \\ Michel Marcus, Mar 21 2016
    
  • Sage
    [n^2*(n+1)*catalan_number(n) for n in (0..30)] # G. C. Greubel, Mar 23 2022

Formula

G.f.: x*(4*x+2)/((1-4*x)^(5/2)). - Marco A. Cisneros Guevara, Jul 25 2011
Sum_{n>=1} 1/a(n) = Pi^2/18 (Euler). - Benoit Cloitre, Apr 07 2002
From Ilya Gutkovskiy, Jan 17 2017: (Start)
a(n) ~ 4^n*n^(3/2)/sqrt(Pi).
Sum_{n>=1} (-1)^(n+1)/a(n) = 2*log(phi)^2 = A086467, where phi is the golden ratio. (End)
D-finite with recurrence: (-n+1)*a(n) +2*(n+4)*a(n-1) +4*(2*n-3)*a(n-2)=0. - R. J. Mathar, Jan 21 2020
a(n) = (2n)!/(Gamma(n))^2. - Diego Rattaggi, Mar 30 2020
a(n) = Sum_{k=0..2*n} binomial(2*n,k)*abs(n-k)^3 (Bruckman, 1999; Strazdins, 2000). - Amiram Eldar, Jan 12 2022
Sum_{n>=1} x^n/a(n) = 2*arcsin(sqrt(x)/2)^2, for abs(x) < 4 (Adegoke et al., 2022, section 5, p. 10). - Amiram Eldar, Dec 07 2024
From Peter Bala, Aug 02 2025: (Start)
For n >= 1,
a(n) = 2*n*(2*n-1)/(n-1)^2 * a(n-1) with a(1) = 2 and
1/a(n) = Sum_{k = 0..n} (-1)^(n+k+1) * binomial(n, k)*binomial(n+k, k)/(n+k)^2. (End)
a(n) = 2 * A002544(n-1) for n>=1. - Alois P. Heinz, Aug 03 2025