A002939 a(n) = 2*n*(2*n-1).
0, 2, 12, 30, 56, 90, 132, 182, 240, 306, 380, 462, 552, 650, 756, 870, 992, 1122, 1260, 1406, 1560, 1722, 1892, 2070, 2256, 2450, 2652, 2862, 3080, 3306, 3540, 3782, 4032, 4290, 4556, 4830, 5112, 5402, 5700, 6006, 6320, 6642, 6972, 7310, 7656, 8010, 8372
Offset: 0
Examples
G.f. = 2*x + 12*x^2 + 30*x^3 + 56*x^4 + 90*x^5 + 132*x^6 + 182*x^7 + 240*x^8 + ... On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step in any of the four cardinal directions and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie along one of the diagonals, as seen in the example below: . 99 64--65--66--67--68--69--70--71--72 | | | 98 63 36--37--38--39--40--41--42 73 | | | | | 97 62 35 16--17--18--19--20 43 74 | | | | | | | 96 61 34 15 4---5---6 21 44 75 | | | | | | | | | 95 60 33 14 3 *0* 7 22 45 76 | | | | | | | | | | 94 59 32 13 *2*--1 8 23 46 77 | | | | | | | | 93 58 31 *12*-11--10---9 24 47 78 | | | | | | 92 57 *30*-29--28--27--26--25 48 79 | | | | 91 *56*-55--54--53--52--51--50--49 80 | | *90*-89--88--87--86--85--84--83--82--81 . [Edited by _Jon E. Schoenfield_, Jan 01 2017]
References
- R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd ed., 1994, p. 99.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- H-Y. Ching, R. Florez, and A. Mukherjee, Families of Integral Cographs within a Triangular Arrays, arXiv:2009.02770 [math.CO], 2020.
- A. M. Nemirovsky et al., Marriage of exact enumeration and 1/d expansion methods: lattice model of dilute polymers, J. Statist. Phys., 67 (1992), 1083-1108.
- R. Tijdeman, Some applications of Diophantine approximation, pp. 261-284 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.
- Eric Weisstein's World of Mathematics, Kirchhoff Index
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Crossrefs
Sequences from spirals: A001107, A002939, A007742, A033951-A033953, A033954, A033989-A033991, A002943, A033996, A033988.
Sequences on the four axes of the square spiral: Starting at 0: A001107, A033991, A007742, A033954; starting at 1: A054552, A054556, A054567, A033951.
Sequences on the four diagonals of the square spiral: Starting at 0: A002939 = 2*A000384, A016742 = 4*A000290, A002943 = 2*A014105, A033996 = 8*A000217; starting at 1: A054554, A053755, A054569, A016754.
Sequences obtained by reading alternate terms on the X and Y axes and the two main diagonals of the square spiral: Starting at 0: A035608, A156859, A002378 = 2*A000217, A137932 = 4*A002620; starting at 1: A317186, A267682, A002061, A080335.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488 (this sequence is the case k=8). - Bruno Berselli, Jun 10 2013
Cf. A371064.
Programs
-
Haskell
a002939 n = (* 2) . a000384 a002939_list = scanl1 (+) a017089_list -- Reinhard Zumkeller, Jun 08 2015
-
Magma
[2*n*(2*n-1): n in [0..50]]; // Vincenzo Librandi, Jul 26 2011
-
Maple
A002939:=n->2*n*(2*n-1): seq(A002939(n), n=0..100); # Wesley Ivan Hurt, Jan 28 2017
-
Mathematica
Table[2*n*(2*n-1), {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Oct 25 2008 *) 2#(2#-1)&/@Range[0,50] (* Harvey P. Dale, Mar 06 2011 *)
-
PARI
a(n)=2*binomial(2*n,2) \\ Charles R Greathouse IV, Jul 25 2011
-
Python
a=lambda n: 2*n*(2*n-1) # Indranil Ghosh, Jan 01 2017
Formula
Sum_{n >= 1} 1/a(n) = log(2) (cf. Tijdeman).
Log(2) = Sum_{n >= 1} ((1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + ...) = Sum_{n >= 0} (-1)^n/(n+1). Log(2) = Integral_{x=0..1} 1/(1+x) dx. - Gary W. Adamson, Jun 22 2003
a(n) = A000384(n)*2. - Omar E. Pol, May 14 2008
From R. J. Mathar, Apr 23 2009: (Start)
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
G.f.: 2*x*(1+3*x)/(1-x)^3. (End)
a(n) = a(n-1) + 8*n - 6 (with a(0)=0). - Vincenzo Librandi, Nov 12 2010
a(n) = A118729(8n+1). - Philippe Deléham, Mar 26 2013
Product_{k=1..n} a(k) = (2n)! = A010050(n). - Tony Foster III, Sep 06 2015
E.g.f.: 2*x*(1 + 2*x)*exp(x). - Ilya Gutkovskiy, Apr 29 2016
a(n) = A002943(-n) for all n in Z. - Michael Somos, Jan 28 2017
0 = 12 + a(n)*(-8 + a(n) - 2*a(n+1)) + a(n+1)*(-8 + a(n+1)) for all n in Z. - Michael Somos, Jan 28 2017
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/4 - log(2)/2. - Amiram Eldar, Jul 31 2020
Comments