cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A271181 Read A002942 digit-by-digit, beginning with an initial 0.

Original entry on oeis.org

0, 1, 4, 9, 6, 1, 5, 2, 6, 3, 9, 4, 4, 6, 1, 8, 1, 1, 2, 1, 4, 4, 1, 9, 6, 1, 6, 9, 1, 5, 2, 2, 6, 5, 2, 9, 8, 2, 4, 2, 3, 1, 6, 3, 4
Offset: 0

Views

Author

Yoga Nugraha, Apr 01 2016

Keywords

Crossrefs

Cf. A002942.

A102859 Numbers that when squared and written backwards give a square again.

Original entry on oeis.org

0, 1, 2, 3, 10, 11, 12, 13, 20, 21, 22, 26, 30, 31, 33, 99, 100, 101, 102, 103, 110, 111, 112, 113, 120, 121, 122, 130, 200, 201, 202, 210, 211, 212, 220, 221, 260, 264, 300, 301, 307, 310, 311, 330, 836, 990, 1000, 1001, 1002, 1003, 1010, 1011, 1012, 1013, 1020
Offset: 1

Views

Author

Sanita Kashcheyeva (sanits(AT)gmail.com), Mar 01 2005

Keywords

Comments

Contains A002778. - Robert Israel, Sep 20 2015
Squares of these terms are in A061457. - Jon E. Schoenfield, May 17 2022

Examples

			a(7)=12 belongs to the sequence since writing 12^2 = 144 backwards gives 441 = 21^2.
		

Crossrefs

Cf. A061457 (squares).

Programs

  • Magma
    [n: n in [0..1100] | IsSquare(Seqint(Reverse(Intseq(n^2))))]; // Vincenzo Librandi, Sep 21 2015
    
  • Maple
    rev:= proc(n)
      local L, Ln, i;
      L:= convert(n, base, 10);
      Ln:= nops(L);
      add(L[i]*10^(Ln-i), i=1..Ln);
    end proc:
    select(t -> issqr(rev(t^2)),[$0..10^5]); # Robert Israel, Sep 20 2015
  • Mathematica
    Select[Range[1000], IntegerQ[Sqrt[FromDigits[Reverse[IntegerDigits[ #^2]]]]] &]
  • Python
    from itertools import count, islice
    from sympy import integer_nthroot
    def A102859_gen(startvalue=0): # generator of terms >= startvalue
        return filter(lambda n:integer_nthroot(int(str(n**2)[::-1]),2)[1], count(max(startvalue,0)))
    A102859_list = list(islice(A102859_gen(),30)) # Chai Wah Wu, Nov 18 2022

Formula

a(n) = sqrt(A061457(n)). - Jon E. Schoenfield, May 17 2022

Extensions

0 inserted by Jon E. Schoenfield, Sep 20 2015

A004165 Cubes written backwards.

Original entry on oeis.org

1, 8, 72, 46, 521, 612, 343, 215, 927, 1, 1331, 8271, 7912, 4472, 5733, 6904, 3194, 2385, 9586, 8, 1629, 84601, 76121, 42831, 52651, 67571, 38691, 25912, 98342, 72, 19792, 86723, 73953, 40393, 57824, 65664, 35605, 27845, 91395, 46, 12986, 88047, 70597, 48158
Offset: 1

Views

Author

Keywords

Crossrefs

Cf. A000578 (cubes), A004086 (n written backwards).
Cf. A002942 (squares written backwards).

Programs

  • Maple
    a:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||(n^3)):
    seq(a(n), n=1..60);  # Alois P. Heinz, May 20 2022
  • Mathematica
    Table[FromDigits[Reverse[IntegerDigits[n^3]]], {n, 1, 50}] (* Vincenzo Librandi, Aug 27 2013 *)
    IntegerReverse[Range[50]^3] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Oct 23 2019 *)
  • PARI
    a(n) = fromdigits(Vecrev(digits(n^3))); \\ Michel Marcus, Jun 04 2019
    
  • Python
    def a(n): return int(str(n**3)[::-1])
    print([a(n) for n in range(1, 45)]) # Michael S. Branicky, May 24 2022

Formula

a(n) = A004086(A000578(n)). - Michel Marcus, Jun 04 2019

Extensions

More terms from Jeremy Gardiner, Sep 08 2002

A061226 a(n) = n^2 + (n^2 with digits reversed).

Original entry on oeis.org

0, 2, 8, 18, 77, 77, 99, 143, 110, 99, 101, 242, 585, 1130, 887, 747, 908, 1271, 747, 524, 404, 585, 968, 1454, 1251, 1151, 1352, 1656, 1271, 989, 909, 1130, 5225, 10890, 7667, 6446, 8217, 11000, 5885, 2772, 1661, 3542, 6435, 11330, 8327, 7227, 8228
Offset: 0

Views

Author

Amarnath Murthy, Apr 22 2001

Keywords

Examples

			a(4) = 77 = 16 + 61; a(7) = 143 = 49 + 94.
		

Crossrefs

Programs

  • Maple
    R:= n-> (s-> parse(cat(s[-i]$i=1..length(s))))(""||n):
    a:= n-> (s-> s+R(s))(n^2):
    seq(a(n), n=0..50);  # Alois P. Heinz, Sep 24 2018
  • Mathematica
    nsr[n_]:=Module[{n2=n^2},n2+FromDigits[Reverse[IntegerDigits[n2]]]]; Array[ nsr,50,0] (* Harvey P. Dale, Jul 23 2012 *)
  • PARI
    {a(n) = n^2+fromdigits(Vecrev(digits(n^2)))} \\ Seiichi Manyama, Sep 24 2018

Formula

a(n) = A000290(n) + A002942(n).

Extensions

More terms from Patrick De Geest, May 29 2001

A002108 4th powers written backwards.

Original entry on oeis.org

1, 61, 18, 652, 526, 6921, 1042, 6904, 1656, 1, 14641, 63702, 16582, 61483, 52605, 63556, 12538, 679401, 123031, 61, 184491, 652432, 148972, 677133, 526093, 679654, 144135, 656416, 182707, 18, 125329, 6758401, 1295811, 6336331, 5260051, 6169761
Offset: 1

Views

Author

Keywords

Crossrefs

{This sequence} Intersection A000583 = A186080 (palindromes).

Programs

  • Mathematica
    FromDigits[Reverse[IntegerDigits[#]]]&/@(Range[40]^4) (* Harvey P. Dale, May 03 2012 *)
  • PARI
    a(n) = fromdigits(Vecrev(digits(n^4))); \\ Michel Marcus, Jun 04 2019

Formula

From Michel Marcus, Jun 04 2019: (Start)
a(n) = A004086(A000583(n)).
a(n) = A002942(n^2). (End)
a(n * 10^k) = a(n) for k >= 1. - Bernard Schott, Jun 04 2019

A074896 Squares written backwards and sorted, duplicates removed.

Original entry on oeis.org

1, 4, 9, 18, 46, 52, 61, 63, 94, 121, 144, 148, 163, 169, 423, 441, 484, 487, 522, 526, 652, 675, 676, 691, 925, 927, 961, 982, 1042, 1062, 1089, 1251, 1273, 1297, 1405, 1426, 1656, 1674, 1828, 1843, 1861, 4032, 4069, 4072, 4201, 4264, 4276, 4441, 4477
Offset: 1

Views

Author

Jason Earls, Sep 14 2002

Keywords

Examples

			163 is in the sequence as it is 19^2 = 361 written backwards. - _David A. Corneth_, Aug 06 2022
		

Crossrefs

Cf. A002942.

Programs

  • PARI
    uptoqdigits(n) = {my(res = List()); forstep(i = 1, sqrtint(10^n), [1,1,1,1,1,1,1,1,2], listput(res, fromdigits(Vecrev(digits(i^2))))); Set(res)} \\ David A. Corneth, Aug 06 2022

A060998 Squares of 1 and primes, written backwards.

Original entry on oeis.org

1, 4, 9, 52, 94, 121, 961, 982, 163, 925, 148, 169, 9631, 1861, 9481, 9022, 9082, 1843, 1273, 9844, 1405, 9235, 1426, 9886, 1297, 9049, 10201, 90601, 94411, 18811, 96721, 92161, 16171, 96781, 12391, 10222, 10822, 94642, 96562, 98872, 92992, 14023
Offset: 1

Views

Author

Martin Goepfert (martin.goepfert(AT)fen-net.de), May 14 2001

Keywords

Comments

Subsequence of A002942. - Michel Marcus, Nov 20 2015

Crossrefs

Programs

  • Maple
    revdigs := proc(n)
      local L, nL, j;
      L:= convert(n, base, 10);
      nL:= nops(L);
      add(L[i]*10^(nL-i), i=1..nL);
    end:
    map(t -> revdigs(t^2), [1,2,op(select(isprime, [seq(i,i=3..10^4,2)]))]); # Robert Israel, Nov 20 2015
  • Mathematica
    Join[{1}, FromDigits[Reverse[IntegerDigits[#^2]]]&/@Prime[Range[100]]] (* Vincenzo Librandi, Nov 20 2015 *)
  • PARI
    a(n) = if(n==1, 1, eval(concat(Vecrev(Str(prime(n-1)^2))))) \\ Altug Alkan, Nov 20 2015

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 15 2001
Offset changed from 0 to 1 by Altug Alkan, Nov 20 2015

A062018 a(n) = n^n written backwards.

Original entry on oeis.org

1, 4, 72, 652, 5213, 65664, 345328, 61277761, 984024783, 1, 116076113582, 6528440016198, 352295601578203, 61085552860021111, 573958083098398734, 61615590737044764481, 771467633688162042728, 42457573569257080464393
Offset: 1

Views

Author

Amarnath Murthy, Jun 01 2001

Keywords

Examples

			a(5) = 5213, as 5^5 = 3125.
		

Crossrefs

Programs

  • Maple
    with(numtheory):for n from 1 to 50 do a := convert(n^n,base,10):b := add(10^(nops(a)- i)*a[i],i=1..nops(a)):printf(`%d,`,b); od:
  • Mathematica
    Table[IntegerReverse[n^n],{n,20}] (* Harvey P. Dale, Jul 31 2022 *)
  • PARI
    a(n) = { fromdigits(Vecrev(digits( n^n )))} \\ Harry J. Smith, Jul 29 2009

Formula

a(n) = A004086(n^n).

Extensions

More terms from Jason Earls and Vladeta Jovovic, Jun 01 2001

A080334 n^2 read backwards, for n = 51, 50, 49, ...

Original entry on oeis.org

1062, 52, 1042, 4032, 9022, 6112, 5202, 6391, 9481, 4671, 1861, 61, 1251, 4441, 9631, 6921, 5221, 6511, 9801, 4201, 169, 9, 148, 487, 927, 676, 526, 675, 925, 484, 144, 4, 163, 423, 982, 652, 522, 691, 961, 441, 121, 1, 18, 46, 94, 63, 52, 61, 9, 4, 1
Offset: 51

Views

Author

N. J. A. Sloane, Mar 19 2003

Keywords

Comments

This sequence breaks all the rules of the database, especially since the terms are in reverse order. It is included only because segments of it are sometimes given as puzzles.

Crossrefs

Cf. A002942 (which is the usual version of this sequence), A000290.

Programs

  • Mathematica
    IntegerReverse/@(Range[51,1,-1]^2) (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jul 25 2019 *)

Formula

Write the squares backwards: 1, 4, 9, 61, 52, 63, 94, 46, 18, 1, 121, 441, 961, 691, ..., then reverse the sequence.

A129914 Irregular square reversible numbers. Numbers which when squared and written backwards give a square again, but don't satisfy reverse(n^2) = reverse(n)^2.

Original entry on oeis.org

26, 33, 99, 260, 264, 307, 330, 836, 990, 2285, 2600, 2636, 2640, 3070, 3168, 3300, 6501, 8360, 9900, 20508, 21468, 22850, 22865, 24846, 26000, 26360, 26400, 30693, 30700, 31680, 33000, 65010
Offset: 1

Views

Author

Robert J. Lemke Oliver (lemkeoliver(AT)gmail.com), Jun 05 2007

Keywords

Examples

			33^2 = 1089 reversed is 9801 = 99^2.
		

Crossrefs

Showing 1-10 of 14 results. Next