cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A005245 The (Mahler-Popken) complexity of n: minimal number of 1's required to build n using + and *.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 6, 6, 6, 7, 8, 7, 8, 8, 8, 8, 9, 8, 9, 9, 9, 10, 11, 9, 10, 10, 9, 10, 11, 10, 11, 10, 11, 11, 11, 10, 11, 11, 11, 11, 12, 11, 12, 12, 11, 12, 13, 11, 12, 12, 12, 12, 13, 11, 12, 12, 12, 13, 14, 12, 13, 13, 12, 12, 13, 13, 14, 13, 14, 13, 14, 12, 13, 13, 13, 13, 14, 13, 14
Offset: 1

Views

Author

Keywords

Comments

The complexity of an integer n is the least number of 1's needed to represent it using only additions, multiplications and parentheses. This does not allow juxtaposition of 1's to form larger integers, so for example, 2 = 1+1 has complexity 2, but 11 does not ("pasting together" two 1's is not an allowed operation).
The complexity of a number has been defined in several different ways by different authors. See the Index to the OEIS for other definitions.
Guy asks if a(p) = a(p-1) + 1 for prime p. Martin Fuller found the least counterexample p = 353942783 in 2008, see Fuller link. - Charles R Greathouse IV, Oct 04 2012
It appears that this sequence is lower than A348262 {1,+,^} only a finite number of times. - Gordon Hamilton and Brad Ballinger, May 23 2022
The second Altman links proves that {a(n) - 3*log_3(n)} is a well-ordered subset of the reals whose intersection with [0,k) has order type omega^k for each positive integer k, so this set itself has order type omega^omega. - Jianing Song, Apr 13 2024

Examples

			From _Lekraj Beedassy_, Jul 04 2009: (Start)
   n.........minimal expression........ a(n) = number of 1's
   1..................1...................1
   2.................1+1..................2
   3................1+1+1.................3
   4.............(1+1)*(1+1)..............4
   5............(1+1)*(1+1)+1.............5
   6............(1+1)*(1+1+1).............5
   7...........(1+1)*(1+1+1)+1............6
   8..........(1+1)*(1+1)*(1+1)...........6
   9...........(1+1+1)*(1+1+1)............6
  10..........(1+1+1)*(1+1+1)+1...........7
  11.........(1+1+1)*(1+1+1)+1+1..........8
  12.........(1+1)*(1+1)*(1+1+1)..........7
  13........(1+1)*(1+1)*(1+1+1)+1.........8
  14.......{(1+1)*(1+1+1)+1}*(1+1)........8
  15.......{(1+1)*(1+1)+1}*(1+1+1)........8
  16.......(1+1)*(1+1)*(1+1)*(1+1)........8
  17......(1+1)*(1+1)*(1+1)*(1+1)+1.......9
  18........(1+1)*(1+1+1)*(1+1+1).........8
  19.......(1+1)*(1+1+1)*(1+1+1)+1........9
  20......{(1+1+1)*(1+1+1)+1}*(1+1).......9
  21......{(1+1)*(1+1+1)+1}*(1+1+1).......9
  22.....{(1+1)*(1+1+1)+1}*(1+1+1)+1.....10
  23....{(1+1)*(1+1+1)+1}*(1+1+1)+1+1....11
  24......(1+1)*(1+1)*(1+1)*(1+1+1).......9
  25.....(1+1)*(1+1)*(1+1)*(1+1+1)+1.....10
  26....{(1+1)*(1+1)*(1+1+1)+1}*(1+1)....10
  27.......(1+1+1)*(1+1+1)*(1+1+1)........9
  28......(1+1+1)*(1+1+1)*(1+1+1)+1......10
  29.....(1+1+1)*(1+1+1)*(1+1+1)+1+1.....11
  30.....{(1+1+1)*(1+1+1)+1}*(1+1+1).....10
  31....{(1+1+1)*(1+1+1)+1}*(1+1+1)+1....11
  32....(1+1)*(1+1)*(1+1)*(1+1)*(1+1)....10
  33...(1+1)*(1+1)*(1+1)*(1+1)*(1+1)+1...11
  34..{(1+1)*(1+1)*(1+1)*(1+1)+1}*(1+1)..11
  .........................................
(End)
		

References

  • M. Criton, "Les uns de Germain", Problem No. 4, pp. 13 ; 68 in '7 x 7 Enigmes Et Défis Mathématiques pour tous', vol. 25, Editions POLE, Paris 2001.
  • R. K. Guy, Unsolved Problems in Number Theory, Sect. F26.
  • K. Mahler and J. Popken, Over een Maximumprobleem uit de Rekenkunde (Dutch: On a maximum problem in arithmetic), Nieuw Arch. Wiskunde, (3) 1 (1953), pp. 1-15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A025280 (variant using +, *, and ^), A091333 (using +, -, and *), A091334 (using +, -, *, and ^), A348089 (using +, -, *, / and ^), A348262 (using + and ^).
Cf. A000792 (largest integer of given complexity), A003313, A076142, A076091, A061373, A005421, A064097, A005520, A003037, A161906, A161908, A244743.

Programs

  • Haskell
    import Data.List (genericIndex)
    a005245 n = a005245_list `genericIndex` (n-1)
    a005245_list = 1 : f 2 [1] where
       f x ys = y : f (x + 1) (y : ys) where
         y = minimum $
             (zipWith (+) (take (x `div` 2) ys) (reverse ys)) ++
             (zipWith (+) (map a005245 $ tail $ a161906_row x)
                          (map a005245 $ reverse $ init $ a161908_row x))
    -- Reinhard Zumkeller, Mar 08 2013
    
  • Maple
    with(numtheory):
    a:= proc(n) option remember;
          `if`(n=1, 1, min(seq(a(i)+a(n-i), i=1..n/2),
           seq(a(d)+a(n/d), d=divisors(n) minus {1, n})))
        end:
    seq(a(n), n=1..100); # Alois P. Heinz, Apr 18 2012
  • Mathematica
    a[n_] := a[n] = If[n == 1, 1,
       Min[Table[a[i] + a[n-i], {i, 1, n/2}] ~Join~
       Table[a[d] + a[n/d], {d, Divisors[n] ~Complement~ {1, n}}]]];
    Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Dec 12 2013, after Alois P. Heinz *)
  • PARI
    A005245(n /* start by calling this with the largest needed n */, lim/* see below */) = { local(d); n<6 && return(n);
    if(n<=#A005245, A005245[n]&return(A005245[n]) /* return memoized result if available */,
    A005245=vector(n) /* create vector if needed - should better reuse existing data if available */);
    for(i=1, n-1, A005245[i] || A005245[i]=A005245(i,lim)); /* compute all previous elements */
    A005245[n]=min( vecmin(vector(min(n\2,if(lim>0,lim,n)), k, A005245[k]+A005245[n-k])) /* additive possibilities - if lim>0 is given, consider a(k)+a(n-k) only for k<=lim - we know it is save to use lim=1 up to n=2e7 */, if( isprime(n), n, vecmin(vector((-1+#d=divisors(n))\2, i, A005245[d[i+1]]+A005245[d[ #d-i]]))/* multiplicative possibilities */))}
    \\ See also the Python program by Tim Peters at A005421.
    \\ M. F. Hasler, Jan 30 2008
    
  • Python
    from functools import lru_cache
    from itertools import takewhile
    from sympy import divisors
    @lru_cache(maxsize=None)
    def A005245(n): return min(min(A005245(a)+A005245(n-a) for a in range(1,(n>>1)+1)),min((A005245(d)+A005245(n//d) for d in takewhile(lambda d:d*d<=n,divisors(n)) if d>1),default=n)) if n>1 else 1 # Chai Wah Wu, Apr 29 2023

Formula

It is known that a(n) <= A061373(n) but I think 0 <= A061373(n) - a(n) <= 1 also holds. - Benoit Cloitre, Nov 23 2003 [That's false: the numbers {46, 235, 649, 1081, 7849, 31669, 61993} require {1, 2, 3, 4, 5, 6, 7} fewer 1's in A005245 than in A061373. - Ed Pegg Jr, Apr 13 2004]
It is known from the work of Selfridge and Coppersmith that 3 log_3 n <= a(n) <= 3 log_2 n = 4.754... log_3 n for all n > 1. [Guy, Unsolved Problems in Number Theory, Sect. F26.] - Charles R Greathouse IV, Apr 19 2012 [Comment revised by N. J. A. Sloane, Jul 17 2016]
Zelinsky (2022) improves the upper bound to a(n) <= A*log n where A = 41/log(55296) = 3.754422.... This compares to the constant 2.7307176... of the lower bound. - Charles R Greathouse IV, Dec 11 2022
a(n) >= A007600(n) is a very accurate lower bound. - Mehmet Sarraç, Dec 18 2022

Extensions

More terms from David W. Wilson, May 15 1997

A005520 Smallest number of complexity n: smallest number requiring n 1's to build using + and *.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 10, 11, 17, 22, 23, 41, 47, 59, 89, 107, 167, 179, 263, 347, 467, 683, 719, 1223, 1438, 1439, 2879, 3767, 4283, 6299, 10079, 11807, 15287, 21599, 33599, 45197, 56039, 81647, 98999, 163259, 203999, 241883, 371447, 540539, 590399, 907199
Offset: 1

Views

Author

Keywords

Comments

Ed Pegg Jr, www.mathpuzzle.com, Apr 10 2001, notes that all the new terms are -1 mod 120. - That is, this holds at least for all terms from a(45) = 590399 up to the highest known term a(89) given in the b-file at the end of 2015. Comment clarified by Antti Karttunen, Dec 14 2015
Largest number of complexity n is given by A000792. - David W. Wilson, Oct 03 2005
After 1438 = 2 * 719, all elements through 8206559 are primes. Equivalently, except for a(4) = 4, a(7) = 10, a(10) = 22 and a(25) = 1438, we have a(1) through a(53) are all primes. - Jonathan Vos Post, Apr 07 2006
a(54)-a(89) are all primes. - Janis Iraids, Apr 21 2011
Previous observations (primes with property -1 mod 120) still hold. - Martins Opmanis, Oct 16 2009
The prime 353942783 = A189125(1) = 2*3 + (1 + 2^2*3^2)*(2 + 3^4(1 + 2*3^10)) is the smallest counterexample to Guy's first hypothesis on integer complexity. - Jonathan Vos Post, Mar 30 2012
The sequence A265360 (second smallest number of complexity n) seems to have similar properties. - Janis Iraids via Antti Karttunen, Dec 15 2015

Examples

			Examples from Piotr Fabian:
1 = 1, 1 "one": first 1, a(1) = 1
2 = 1+1, 2 "ones": first 2, a(2) = 2
3 = 1+1+1, 3 "ones": first 3, a(3) = 3
4 = 1+1+1+1, 4 "ones": first 4, a(4) = 4
5 = 1+1+1+1+1, 5 "ones": first 5, a(5) = 5
6 = (1+1)*(1+1+1), 5 "ones"
7 = 1+((1+1)*(1+1+1)), 6 "ones": first 6, a(6) = 7
8 = (1+1)*(1+1+1+1), 6 "ones"
9 = (1+1+1)*(1+1+1), 6 "ones"
10 = 1+((1+1+1)*(1+1+1)), 7 "ones": first 7, a(7) = 10
11 = 1+(1+(1+1+1)*(1+1+1)), 8 "ones": first 8, a(8) = 11
12 = (1+1)*((1+1)*(1+1+1)), 7 "ones"
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sec. F26 (related material).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • MATLAB
    N = 10^6;
    fact = cell(1,N);
    for n = 2:sqrt(N)
      for m = [n^2:n:N]
        fact{m} = [fact{m},n];
      end
    end
    R = zeros(1,N);
    R(1) = 1;
    A(1) = 1;
    mmax = 1;
    for n = 2:N
      m = min(R(1:floor(n/2)) + R([n-1:-1:ceil(n/2)]));
      if numel(fact{n}) > 0
        m = min(m, min(R(fact{n}) + R(n ./ fact{n})));
      end
      R(n) = m;
      if m > mmax
        A(m) = n;
        mmax = m;
      elseif A(m) == 0
        A(m) = n;
      end
    end
    A % Robert Israel, Dec 14 2015
    
  • Maple
    N:= 100000: # to get all terms <= N
    R:= Vector(N):
    R[1]:= 1: A[1]:= 1:
    for n from 2 to N do
      inds:= [seq(n-i,i=1..floor(n/2))];
      m:= min(R[1..floor(n/2)] + R[inds]);
      for d in select(`<=`,numtheory:-divisors(n),floor(sqrt(n))) minus {1} do
        m:= min(m, R[d]+R[n/d])
      od;
      R[n]:= m;
      if not assigned(A[m]) then A[m]:= n fi;
    od:
    seq(A[m],m=1..max(R)); # Robert Israel, Dec 14 2015
  • Mathematica
    nn = 10000;
    R = Table[0, nn];
    R[[1]] = 1; Clear[A]; A[1] = 1;
    For[n = 2, n <= nn, n++,
      inds = Table[n-i, {i, 1, n/2}];
      m = Min[R[[1 ;; Floor[n/2]]] + R[[inds]]];
      Do[
        m = Min[m, R[[d]] + R[[n/d]]], {d,
        Select[Rest[Divisors[n]], # <= Sqrt[n]&]}
      ];
      R[[n]] = m;
      If[!IntegerQ[A[m]], A[m] = n];
    ];
    Table[A[m], {m, 1, Max[R]}] (* Jean-François Alcover, Aug 05 2018, after Robert Israel *)
  • Python
    def aupton(nn):
      alst, R = [1], {0: {1}} # R[n] is set reachable using n+1 1's (n ops)
      for n in range(1, nn):
        R[n]  = set(a+b for i in range(n//2+1) for a in R[i] for b in R[n-1-i])
        R[n] |= set(a*b for i in range(n//2+1) for a in R[i] for b in R[n-1-i])
        alst.append(min(R[n] - R[n-1]))
      return alst
    print(aupton(35)) # Michael S. Branicky, Jun 08 2021

Extensions

Corrected and extended by David W. Wilson, May 1997
Extended to terms a(40)=163259 and a(41)=203999 by John W. Layman, Nov 03 1999
Further terms from Piotr Fabian (PCF(AT)who.net), Mar 30 2001
a(68)-a(89) from Janis Iraids, Apr 20 2011

A025280 Complexity of n: number of 1's required to build n using +, *, and ^.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 6, 5, 5, 6, 7, 7, 8, 8, 8, 6, 7, 7, 8, 8, 9, 9, 10, 8, 7, 8, 6, 7, 8, 9, 10, 7, 8, 9, 10, 7, 8, 9, 10, 10, 11, 11, 12, 11, 10, 11, 12, 9, 8, 9, 10, 10, 11, 8, 9, 9, 10, 10, 11, 11, 12, 12, 11, 7, 8, 9, 10, 11, 12, 12, 13, 9, 10, 10, 10, 11, 12, 11, 12, 11, 7, 8, 9, 10, 11, 12, 11
Offset: 1

Views

Author

Keywords

References

  • R. K. Guy, Unsolved Problems Number Theory, Sect. F26.

Crossrefs

Cf. A005245 (variant using + and *), A091333 (using +, -, and *), A091334 (using +, -, *, and ^), A348089 (using +, -, *, /, and ^), A348262 (using + and ^).

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=1, 1, min(
           seq(a(i)+a(n-i), i=1..n-1),
           seq(a(d)+a(n/d), d=divisors(n) minus {1, n}),
           seq(a(root(n, p))+a(p), p=divisors(igcd(seq(i[2],
               i=ifactors(n)[2]))) minus {0,1})))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 08 2013
  • Mathematica
    root[x_, n_] := With[{f = FactorInteger[x]}, Times @@ (f[[All, 1]]^(f[[All, 2]]/n))]; Clear[a]; a[n_] := a[n] = If[n == 1, 1, Min[Table[a[i] + a[n-i], {i, 1, n-1}], Table[a[d] + a[n/d], {d, Divisors[n][[2 ;; -2]]}], Table[a[root[n, p]] + a[p], {p, DeleteCases[Divisors[GCD @@ FactorInteger[n][[All, 2]]], 0|1]}]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 12 2014, after Alois P. Heinz *)
  • Python
    from math import gcd
    from sympy import divisors, factorint, integer_nthroot
    from functools import cache
    @cache
    def a(n):
        if n == 1: return 1
        p = min(a(i)+a(n-1) for i in range(1, n//2+1))
        divs, m = divisors(n), n
        if len(divs) > 2:
            m = min(a(d)+a(n//d) for d in divs[1:len(divs)//2+1])
        f = factorint(n)
        edivs, e = divisors(gcd(*f.values())), n
        if len(edivs) > 1:
            e = min(a(integer_nthroot(n, r)[0])+a(r) for r in edivs[1:])
        return min(p, m, e)
    print([a(n) for n in range(1, 88)]) # Michael S. Branicky, Mar 24 2024 after Alois P. Heinz

Formula

a(n) = A005208(n) + 1.

A182002 Smallest positive integer that cannot be computed using exactly n n's, the four basic arithmetic operations (+, -, *, /), and the parentheses.

Original entry on oeis.org

2, 2, 1, 10, 13, 22, 38, 91, 195, 443, 634, 1121, 3448, 6793, 17692
Offset: 1

Views

Author

Ali Dasdan, Apr 05 2012

Keywords

Examples

			a(2) = 2 because two 2's can produce 0 = 2-2, 1 = 2/2, 4 = 2+2 = 2*2, so the smallest positive integer that cannot be computed is 2.
a(3) = 1 because no expression with three 3's gives 1.
		

Crossrefs

Programs

  • Maple
    f:= proc(n,b) option remember;
          `if`(n=1, {b}, {seq(seq(seq([k+m, k-m, k*m,
          `if`(m=0, NULL, k/m)][], m=f(n-i, b)), k=f(i, b)), i=1..n-1)})
        end:
    a:= proc(n) local i, l;
          l:= sort([infinity, select(x-> is(x, integer) and x>0, f(n, n))[]]);
          for i do if l[i]<>i then return i fi od
        end:
    seq(a(n), n=1..8); # Alois P. Heinz, Apr 13 2012
  • Python
    from fractions import Fraction
    from functools import lru_cache
    def a(n):
        @lru_cache()
        def f(m):
            if m == 1: return {Fraction(n, 1)}
            out = set()
            for j in range(1, m//2+1):
                for x in f(j):
                    for y in f(m-j):
                        out.update([x + y, x - y, y - x, x * y])
                        if y: out.add(Fraction(x, y))
                        if x: out.add(Fraction(y, x))
            return out
        k, s = 1, f(n)
        while k in s: k += 1
        return k
    print([a(n) for n in range(1, 10)]) # Michael S. Branicky, Jul 29 2022

Extensions

a(11)-a(12) from Alois P. Heinz, Apr 22 2012
a(13)-a(14) from Michael S. Branicky, Jul 29 2022
a(15) from Michael S. Branicky, Jul 27 2023

A005208 Operator-oriented complexity of n, i.e., the minimum number of occurrences of +, *, and ^ needed to build n from a supply of ones.

Original entry on oeis.org

0, 1, 2, 3, 4, 4, 5, 4, 4, 5, 6, 6, 7, 7, 7, 5, 6, 6, 7, 7, 8, 8, 9, 7, 6, 7, 5, 6, 7, 8, 9, 6, 7, 8, 9, 6, 7, 8, 9, 9, 10, 10, 11, 10, 9, 10, 11, 8, 7, 8, 9, 9, 10, 7, 8, 8, 9, 9, 10, 10, 11, 11, 10, 6, 7, 8, 9, 10, 11, 11, 12, 8, 9, 9, 9, 10, 11, 10, 11, 10
Offset: 1

Views

Author

Keywords

Comments

The formula is correct because k ones require exactly k - 1 binary operators to reduce to a single value. - Glen Whitney, Oct 06 2021

References

  • W. A. Beyer, M. L. Stein and S. M. Ulam, The Notion of Complexity. Report LA-4822, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, December 1971.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A025280.

Formula

a(n) = A025280(n) - 1.

Extensions

Name clarified by Glen Whitney, Oct 06 2021

A133344 Complexity of the number n, counting 1's and built using +, *, ^ and # representing concatenation.

Original entry on oeis.org

1, 2, 3, 4, 5, 5, 6, 5, 5, 6, 2, 3, 4, 5, 6, 6, 7, 6, 6, 7, 3, 4, 5, 5, 6, 6, 6, 7, 7, 8, 4, 5, 5, 6, 7, 6, 7, 8, 7, 8, 5, 5, 6, 6, 7, 7, 8, 7, 8, 8, 6, 7, 7, 8, 7, 8, 9, 9, 9, 8, 6, 6, 6, 7, 8, 7, 8, 8, 8, 9, 7, 8, 8, 8, 9, 10, 8, 9, 10, 10, 6, 7, 8, 7, 8, 8
Offset: 1

Views

Author

Jonathan Vos Post, Oct 20 2007

Keywords

Comments

The complexity of an integer n is the least number of 1's needed to represent it using only additions, multiplications, exponentiation and parentheses. This allows juxtaposition of numbers to form larger integers, so for example, 2 = 1+1 has complexity 2, but unlike A003037, so does 11 = 1#1 (concatenating two numbers is an allowed operation). Similarly a(111) = 3. The complexity of a number has been defined in several different ways by different authors. See the Index to the OEIS for other definitions.

Examples

			An example (usually nonunique) of the derivation of the first 22 values.
a(1) = 1, the number of 1's in "1."
a(2) = 2, the number of 1's in "1+1 = 2."
a(3) = 3, the number of 1's in "1+1+1 = 3."
a(4) = 4, the number of 1's in "1+1+1+1 = 4."
a(5) = 5, the number of 1's in "1+1+1+1+1 = 5."
a(6) = 5, since there are 5 1's in "((1+1)*(1+1+1)) = 6."
a(7) = 6, since there are 6 1's in "1+(((1+1)*(1+1+1))) = 7."
a(8) = 5, since there are 5 1's in "(1+1)^(1+1+1) = 8."
a(9) = 5, since there are 5 1's in "(1+1+1)^(1+1) = 9."
a(10) = 6 since there are 6 1's in "1+((1+1+1)^(1+1)) = ten.
a(11) = 2 since there are 2 1's in "1#1 = eleven."
a(12) = 3 since there are 3 1's in "1+(1#1) = twelve."
a(13) = 4 since there are 4 1's in "1+1+(1#1) = thirteen."
a(14) = 5 since there are 5 1's in "1+1+1+(1#1) = fourteen."
a(16) = 6 since there are 6 1's in "(1+1+1+1)^(1+1)."
a(17) = 7 since there are 7 1's in "1+((1+1+1+1)^(1+1))."
a(18) = 6 since there are 6 1's in "1#((1+1)^(1+1+1))."
a(19) = 6 since there are 6 1's in "1#((1+1+1)^(1+1))."
a(20) = 7 since there are 7 1's in "(1#1)+((1+1+1)^(1+1))."
a(21) = 3 since there are 3 1's in "(1+1)#1."
a(22) = 4 since 22 = (1+1)*(1#1) = (1#1)+(1#1) = (1+1)#(1+1).
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; local r; `if`(n=1, 1, min(
           seq(a(i)+a(n-i), i=1..n-1),
           seq(a(d)+a(n/d), d=divisors(n) minus {1, n}),
           seq(`if`(cat("", n)[i+1]<>"0", a(iquo(n, 10^(length(n)-i),
               'r'))+a(r), NULL), i=1..length(n)-1),
           seq(a(root(n, p))+a(p), p=divisors(igcd(seq(i[2],
               i=ifactors(n)[2]))) minus {0, 1})))
        end:
    seq(a(n), n=1..120);  # Alois P. Heinz, Nov 06 2013

A213924 Minimal lengths of formulas representing n only using addition, exponentiation and the constant 1.

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 9, 9, 11, 13, 15, 17, 19, 21, 11, 13, 15, 17, 19, 21, 23, 25, 21, 13, 15, 11, 13, 15, 17, 19, 13, 15, 17, 19, 15, 17, 19, 21, 23, 23, 25, 23, 25, 25, 27, 29, 25, 17, 19, 21, 23, 25, 23, 25, 27, 27, 27, 25, 27, 29, 31, 27, 13, 15, 17, 19, 21, 23, 25, 27, 23, 23, 25, 27, 29, 31, 33
Offset: 1

Views

Author

Jonathan Vos Post, Mar 06 2013

Keywords

Examples

			There are 502 different formulas for n=8. Two of them have shortest length 9: 11+111++^, 11+11+1+^. Thus a(8) = 9.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; 1+ `if`(n=1, 0, min(
           seq(a(i)+a(n-i), i=1..n-1),
           seq(a(root(n, p))+a(p), p=divisors(igcd(seq(i[2],
               i=ifactors(n)[2]))) minus {0, 1})))
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Mar 12 2013
  • Mathematica
    a[n_] := a[n] = 1 + If[n==1, 0, Min[Table[a[i]+a[n-i], {i, 1, n-1}], Table[ a[Floor[n^(1/p)]] + a[p], {p, Divisors[GCD @@ FactorInteger[n][[All, 2]]] ~Complement~ {0, 1}}]]]; Array[a, 100] (* Jean-François Alcover, Mar 22 2017, after Alois P. Heinz *)

A117618 Least number with complexity height of n, under integer complexity A005245.

Original entry on oeis.org

1, 6, 7, 10, 22, 683
Offset: 1

Views

Author

Jonathan Vos Post, Apr 07 2006

Keywords

Comments

Consider the recursion: A005245(n), A005245(A005245(n)), A005245(A005245(A005245(n))), ... which we know is finite before reaching a fixed point, as A005245(n) <= n. The number of steps needed to reach such a fixed point is the complexity height of n (with respect to the A005245 measure of complexity, there being others in the OEIS).
a(7) >= 872573642639 = A005520(89). - David A. Corneth, May 06 2024

Examples

			a(1) = 1 because the A005245 complexity of 1 is 1, already giving a fixed point.
a(2) = 6 because it is the smallest x such that A005245(x) =/= x and A005245(x) = A005245(A005245(x)).
a(3) = 7 because 7 is the least number x with complexity 6, thus taking a further step of recursion to reach a fixed point.
a(4) = 10 because 10 is the least number with complexity 7.
a(5) = 22 because 22 is the least number with complexity 10.
a(6) = 683 because 683 is the least number with complexity 22.
a(7) = the least number with complexity 683.
		

References

  • W. A. Beyer, M. L. Stein and S. M. Ulam, The Notion of Complexity. Report LA-4822, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, December 1971.
  • R. K. Guy, Unsolved Problems in Number Theory, Sect. F26.

Crossrefs

Formula

a(n) = least k such that A005245^(n)(k) = A005245^(n-1)(k) but (if n>1) A005245^(n-1)(k) != A005245^(n-2)(k), where ^ denotes repeated application.
For n >= 3, a(n) = A005520(a(n-1)). - Max Alekseyev, May 06 2024

Extensions

a(2)=6 inserted by Giovanni Resta, Jun 15 2016
Edited by Max Alekseyev, May 06 2024

A117632 Number of 1's required to build n using {+,T} and parentheses, where T(i) = i*(i+1)/2.

Original entry on oeis.org

1, 2, 2, 3, 4, 2, 3, 4, 4, 3, 4, 4, 5, 6, 4, 5, 6, 6, 7, 6, 2, 3, 4, 4, 5, 6, 4, 3, 4, 5, 5, 6, 6, 5, 6, 4, 5, 6, 6, 7, 8, 4, 5, 6, 4, 5, 6, 6, 5, 6, 6, 7, 8, 8, 3, 4, 5, 5, 6, 7, 5, 6, 6, 7, 6, 4, 5, 6, 6, 7, 8, 6, 7, 8, 8, 5, 6, 4, 5, 6, 6, 7, 6, 6, 7, 8, 6, 7, 8, 8, 5, 6, 7, 7, 8, 9, 7, 8, 6, 7, 8, 8
Offset: 1

Views

Author

Jonathan Vos Post, Apr 08 2006

Keywords

Comments

This problem has the optimal substructure property.

Examples

			a(1) = 1 because "1" has a single 1.
a(2) = 2 because "1+1" has two 1's.
a(3) = 2 because 3 = T(1+1) has two 1's.
a(6) = 2 because 6 = T(T(1+1)).
a(10) = 3 because 10 = T(T(1+1)+1).
a(12) = 4 because 12 = T(T(1+1)) + T(T(1+1)).
a(15) = 4 because 15 = T(T(1+1)+1+1).
a(21) = 2 because 21 = T(T(T(1+1))).
a(28) = 3 because 28 = T(T(T(1+1))+1).
a(55) = 3 because 55 = T(T(T(1+1)+1)).
		

References

  • W. A. Beyer, M. L. Stein and S. M. Ulam, The Notion of Complexity. Report LA-4822, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, 1971.
  • R. K. Guy, Unsolved Problems Number Theory, Sect. F26.

Crossrefs

See also A023361 = number of compositions into sums of triangular numbers, A053614 = numbers that are not the sum of triangular numbers. Iterated triangular numbers: A050536, A050542, A050548, A050909, A007501.

Programs

  • Maple
    a:= proc(n) option remember; local m; m:= floor (sqrt (n*2));
          if n<3 then n
        elif n=m*(m+1)/2 then a(m)
        else min (seq (a(i)+a(n-i), i=1..floor(n/2)))
          fi
        end:
    seq (a(n), n=1..110);  # Alois P. Heinz, Jan 05 2011
  • Mathematica
    a[n_] := a[n] = Module[{m = Floor[Sqrt[n*2]]}, If[n < 3, n, If[n == m*(m + 1)/2, a[m], Min[Table[a[i] + a[n - i], {i, 1, Floor[n/2]}]]]]];
    Array[a, 110] (* Jean-François Alcover, Jun 02 2018, from Maple *)

Extensions

I do not know how many of these entries have been proved to be minimal. - N. J. A. Sloane, Apr 15 2006
Corrected and extended by Alois P. Heinz, Jan 05 2011

A259466 Smallest number of 10-bit complement complexity n.

Original entry on oeis.org

0, 2, 3, 4, 5, 7, 11, 13, 21, 39, 41, 43, 115, 173, 311
Offset: 0

Views

Author

N. J. A. Sloane, Jul 01 2015

Keywords

Comments

Beyer, Stein, and Ulam (see references) define the unary operation of "b-bit complementation" as j -> 2^b - 1 - j. This sequence a(n) gives the smallest number k such that at least n+1 zeros and/or ones are required to build k using +, *, ^, and 10-bit complementation. - Glen Whitney, Oct 05 2021

References

  • W. A. Beyer, M. L. Stein and S. M. Ulam, The Notion of Complexity. Report LA-4822, Los Alamos Scientific Laboratory of the University of California, Los Alamos, NM, December 1971.

Crossrefs

Cf. A003037.

Extensions

Name clarified by Glen Whitney, Oct 05 2021
Showing 1-10 of 13 results. Next