cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A003710 Expansion of e.g.f. cos(tan(x)) (even powers only).

Original entry on oeis.org

1, -1, -7, -97, -2063, -53409, -752343, 166831871, 43685848289, 9398558916159, 2116926930779225, 524586454143030495, 144620290378876829905, 44287070229737735633567, 14954349885478653319004041
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nn = 20; Table[(CoefficientList[Series[Cos[Tan[x]], {x, 0, 2*nn}], x] * Range[0, 2*nn]!)[[n]], {n, 1, 2*nn+1, 2}] (* Vaclav Kotesovec, Feb 16 2015 *)
  • Maxima
    a(n):=if n=0 then 1 else 2*sum((sum(binomial(j-1,2*m-1)*j!*2^(2*n-j-1)*(-1)^(n+j)*stirling2(2*n,j),j,2*m,2*n))/(2*m)!,m,0,n); /* Vladimir Kruchinin, Jun 28 2011 */
    
  • PARI
    my(x='x+O('x^30)); select(x->x, Vec(serlaplace(cos(tan(x))))) \\ Michel Marcus, Oct 02 2021

Formula

a(n) = 2 * Sum_{m=0..n} ( Sum_{j=2*m..2*n} binomial(j-1,2*m-1) * j! * 2^(2*n-j-1) * (-1)^(n+j) * Stirling2(2*n,j) )/(2*m)!, n>0, a(0)=1. - Vladimir Kruchinin, Jun 29 2011

A081443 Binomial transform of expansion of cosh(sinh(x)).

Original entry on oeis.org

1, 1, 2, 4, 12, 36, 128, 456, 1872, 7888, 37600, 184064, 990784, 5444544, 32333824, 195982208, 1272660224, 8441139456, 59527313920, 428299217920, 3252626013184, 25165446157312, 204354574172160, 1689266143553536, 14594815769038848
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Binomial transform of A003709 (unsigned, with periodic zeros added).

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(x)*Cosh(Sinh(x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 14 2019
    
  • Maple
    seq(coeff(series(exp(x)*cosh(sinh(x)), x, n+1)*factorial(n), x, n), n = 0 .. 30); # G. C. Greubel, Aug 14 2019
  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x]Cosh[Sinh[x]],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Nov 14 2011 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(x)*cosh(sinh(x)) )) \\ G. C. Greubel, Aug 14 2019
    
  • Sage
    [factorial(n)*( exp(x)*cosh(sinh(x)) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Aug 14 2019

Formula

E.g.f.: exp(x)*cosh(sinh(x)).

A081444 Second binomial transform of expansion of cosh(sinh(x)).

Original entry on oeis.org

1, 2, 5, 14, 45, 162, 641, 2718, 12249, 58370, 294493, 1571374, 8858053, 52542882, 326804185, 2122860862, 14366452913, 101063123202, 738075208501, 5587492946510, 43795838894941, 354876969914786, 2968890716640945
Offset: 0

Views

Author

Paul Barry, Mar 22 2003

Keywords

Comments

Second binomial transform of A003709 (viewed as unsigned, with periodic zeros added).
Binomial transform of A081443.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( Exp(2*x)*Cosh(Sinh(x)) )); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Aug 14 2019
    
  • Maple
    seq(coeff(series(exp(2*x)*cosh(sinh(x)), x, n+1)*factorial(n), x, n), n = 0 .. 30); # G. C. Greubel, Aug 14 2019
  • Mathematica
    With[{nn = 30}, CoefficientList[Series[Exp[2x]Cosh[Sinh[x]], {x, 0, nn}], x] Range[0, nn]!] (* Vincenzo Librandi, Aug 08 2013 *)
  • PARI
    my(x='x+O('x^30)); Vec(serlaplace( exp(2*x)*cosh(sinh(x)) )) \\ G. C. Greubel, Aug 14 2019
    
  • Sage
    [factorial(n)*( exp(2*x)*cosh(sinh(x)) ).series(x,n+1).list()[n] for n in (0..30)] # G. C. Greubel, Aug 14 2019

Formula

E.g.f.: exp(2*x) * cosh(sinh(x)).

A297214 Expansion of e.g.f. exp(cos(sin(x))-1) (even powers only).

Original entry on oeis.org

1, -1, 8, -127, 3523, -146964, 8538477, -655457233, 63974756924, -7713566822979, 1123255462229507, -193995005614903728, 39147722262966666217, -9115873617718182207793, 2423565558533387761866928, -728969374928760685473620951, 246100624914698937364249220851
Offset: 0

Views

Author

Ilya Gutkovskiy, Dec 27 2017

Keywords

Examples

			exp(cos(sin(x))-1) = 1 - x^2/2! + 8*x^4/4! - 127*x^6/6! + 3523*x^8/8! - 146964*x^10/10! + ...
		

Crossrefs

Programs

  • Mathematica
    nmax = 16; Table[(CoefficientList[Series[Exp[Cos[Sin[x]] - 1], {x, 0, 2 nmax}], x] Range[0, 2 nmax]!)[[n]], {n, 1, 2 nmax + 1, 2}]

Formula

a(n) = (2*n)! * [x^(2*n)] exp(cos(sin(x))-1).
Showing 1-4 of 4 results.