cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004006 a(n) = C(n,1) + C(n,2) + C(n,3), or n*(n^2 + 5)/6.

Original entry on oeis.org

0, 1, 3, 7, 14, 25, 41, 63, 92, 129, 175, 231, 298, 377, 469, 575, 696, 833, 987, 1159, 1350, 1561, 1793, 2047, 2324, 2625, 2951, 3303, 3682, 4089, 4525, 4991, 5488, 6017, 6579, 7175, 7806, 8473, 9177, 9919, 10700, 11521, 12383, 13287, 14234, 15225
Offset: 0

Views

Author

Albert D. Rich (Albert_Rich(AT)msn.com)

Keywords

Comments

3-dimensional analog of centered polygonal numbers.
The Burnside group B(3,n) has order 3^a(n).
Answer to the question: if you have a tall building and 3 plates and you need to find the highest story, a plate thrown from which does not break, what is the number of stories you can handle given n tries? - Leonid Broukhis, Oct 24 2000
Equals row sums of triangle A144329 starting with "1". - Gary W. Adamson, Sep 18 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=A[i,i]:=1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=4, a(n-1)=-coeff(charpoly(A,x),x^(n-3)). - Milan Janjic, Jan 24 2010
From J. M. Bergot, Aug 03 2011: (Start)
If one formed the 3 X 3 square
| n | n+1 | n+2 |
| n+3 | n+4 | n+5 |
| n+6 | n+7 | n+8 |
and found the sum of the horizontal products n*(n + 1)*(n + 2) + (n + 3)*(n + 4)*(n + 5) + (n + 6)*(n + 7)*(n + 8) and added the sum of the vertical products n*(n + 3)*(n + 6) + (n + 1)*(n + 4)*(n + 7) + (n + 2)*(n + 5)(n + 8) one gets 6*n^3 + 72*n^2 + 318*n + 504. This will give 36 times the values of all the terms in this sequence. (End)
a(n) is divisible by n for n congruent to {1,5} mod 6. (see A007310). - Gary Detlefs, Dec 08 2011
From Beimar Naranjo, Feb 22 2024: (Start)
Number of compositions with at most three parts and sum at most n.
Also the number of compositions with at most one part distinct from 1 and with a sum at most n. (End)
a(n) is the number of strings of length n defined on {0, 1, 2, 3} that contain one 1 and any number of 0's, or two 2's and any number of 0's, or three 3's and any number of 0's. For example, a(6) = 41 since the strings are the 20 permutations of 333000, the 15 permutations of 220000 and the 6 permutations of 100000. - Enrique Navarrete, Jun 18 2025

Examples

			G.f. = x + 3*x^2 + 7*x^3 + 14*x^4 + 25*x^5 + 41*x^6 + 63*x^7 + 92*x^8 + ... - _Michael Somos_, Dec 29 2019
		

References

  • W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wiley, 1966, see p. 380.

Crossrefs

Cf. A051576, A055795, A006552. Differences give A000217 + 1 or A000124.
1/12*t*(n^3-n)+n for t = 2, 4, 6, ... gives A004006, A006527, A006003, A005900, A004068, A000578, A004126, A000447, A004188, A004466, A004467, A007588, A062025, A063521, A063522, A063523.

Programs

Formula

G.f.: x*(1-x+x^2)/(1-x)^4.
E.g.f.: x*(1 + x/2 + x^2/6) * exp(x).
a(-n) = -a(n).
a(n) = binomial(n+2,n-1) - binomial(n,n-2). - Zerinvary Lajos, May 11 2006
Euler transform of length 6 sequence [3, 1, 1, 0, 0, -1]. - Michael Somos, May 04 2007
Starting (1, 3, 7, 14, ...) = binomial transform of [1, 2, 2, 1, 0, 0, 0, ...]. - Gary W. Adamson, Apr 24 2008
a(0)=0, a(1)=1, a(2)=3, a(3)=7, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Aug 21 2011
a(n+1) = A000292(n) + n + 1. - Reinhard Zumkeller, Mar 31 2012
a(n) = 2*a(n-1) + (n-1) - a(n-2) with a(0) = 0, a(1) = 1. - Richard R. Forberg, Jan 23 2014
a(n) = Sum_{i=1..n} binomial(n-2i,2). - Wesley Ivan Hurt, Nov 18 2017
a(n) = n + Sum_{k=0..n} k*(n-k). - Gionata Neri, May 19 2018
a(n) = Sum_{k=0..n-1} A000124(k). - Torlach Rush, Aug 05 2018
G.f.: ((1 - x^5)/(1 - x)^5 - 1)/5. - Michael Somos, Dec 29 2019
G.f.: g(f(x)), where g is g.f. of A001477 and f is g.f. of A128834. - Oboifeng Dira, Jun 21 2020
Sum_{n>0} 1/a(n) = 3*(2*gamma + polygamma(0, 1-i*sqrt(5)) + polygamma(0, 1+i*sqrt(5)))/5 = 1.6787729555834452106286261834348972248... where i denotes the imaginary unit. - Stefano Spezia, Aug 31 2023