A004006 a(n) = C(n,1) + C(n,2) + C(n,3), or n*(n^2 + 5)/6.
0, 1, 3, 7, 14, 25, 41, 63, 92, 129, 175, 231, 298, 377, 469, 575, 696, 833, 987, 1159, 1350, 1561, 1793, 2047, 2324, 2625, 2951, 3303, 3682, 4089, 4525, 4991, 5488, 6017, 6579, 7175, 7806, 8473, 9177, 9919, 10700, 11521, 12383, 13287, 14234, 15225
Offset: 0
Examples
G.f. = x + 3*x^2 + 7*x^3 + 14*x^4 + 25*x^5 + 41*x^6 + 63*x^7 + 92*x^8 + ... - _Michael Somos_, Dec 29 2019
References
- W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wiley, 1966, see p. 380.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..5000
- Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372. [From Parthasarathy Nambi, Sep 30 2009]
- F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
- Oboifeng Dira, A Note on Composition and Recursion, Southeast Asian Bulletin of Mathematics, 2017, Vol. 41 Issue 6, pp. 849-853.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006.
- N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
- Laurent Saloff-Coste, Random walks on finite groups, in Probability on discrete structures, 263-346, Encyclopaedia Math. Sci., 110, Springer, 2004.
- Bridget Eileen Tenner, Reduced word manipulation: patterns and enumeration, J. Algebr. Comb. 46, No. 1, 189-217 (2017), w in S_n(231) l(w)=3.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Programs
-
GAP
List([0..50], n-> n*(n^2+5)/6); # G. C. Greubel, Aug 27 2019
-
Haskell
a004006 n = a000292 n + n + 1 -- Reinhard Zumkeller, Mar 31 2012
-
Magma
[n*(n^2+5)/6: n in [0..50]]; // Vincenzo Librandi, May 15 2011
-
Maple
A004006 := proc(n) n*(n^2+5)/6 ;end proc: seq(A004006(n),n=0..10) ; # R. J. Mathar, Jun 05 2011
-
Mathematica
Table[Total[Table[Binomial[n,i], {i,3}]], {n,0,50}] (* or *) LinearRecurrence[{4,-6,4,-1}, {0,1,3,7}, 50] (* Harvey P. Dale, Aug 21 2011 *)
-
Maxima
A004006(n):=n*(n^2+5)/6$ makelist(A004006(n),n,0,30); /* Martin Ettl, Jan 08 2013 */
-
PARI
{a(n) = n*(n^2 + 5)/6}; /* Michael Somos, May 04 2007 */
-
Sage
[n*(n^2+5)/6 for n in (0..50)] # G. C. Greubel, Aug 27 2019
Formula
G.f.: x*(1-x+x^2)/(1-x)^4.
E.g.f.: x*(1 + x/2 + x^2/6) * exp(x).
a(-n) = -a(n).
a(n) = binomial(n+2,n-1) - binomial(n,n-2). - Zerinvary Lajos, May 11 2006
Euler transform of length 6 sequence [3, 1, 1, 0, 0, -1]. - Michael Somos, May 04 2007
Starting (1, 3, 7, 14, ...) = binomial transform of [1, 2, 2, 1, 0, 0, 0, ...]. - Gary W. Adamson, Apr 24 2008
a(0)=0, a(1)=1, a(2)=3, a(3)=7, a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Harvey P. Dale, Aug 21 2011
a(n+1) = A000292(n) + n + 1. - Reinhard Zumkeller, Mar 31 2012
a(n) = 2*a(n-1) + (n-1) - a(n-2) with a(0) = 0, a(1) = 1. - Richard R. Forberg, Jan 23 2014
a(n) = Sum_{i=1..n} binomial(n-2i,2). - Wesley Ivan Hurt, Nov 18 2017
a(n) = n + Sum_{k=0..n} k*(n-k). - Gionata Neri, May 19 2018
a(n) = Sum_{k=0..n-1} A000124(k). - Torlach Rush, Aug 05 2018
G.f.: ((1 - x^5)/(1 - x)^5 - 1)/5. - Michael Somos, Dec 29 2019
Sum_{n>0} 1/a(n) = 3*(2*gamma + polygamma(0, 1-i*sqrt(5)) + polygamma(0, 1+i*sqrt(5)))/5 = 1.6787729555834452106286261834348972248... where i denotes the imaginary unit. - Stefano Spezia, Aug 31 2023
Comments